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Abstract
This work evaluates feasibility and capability of the use of coastal altimetry data in submesoscale

process (hourly and km-scale) studies with comparisons among independent mesoscale and

submesoscale observations including sea surface heights (SSHs, or sea surface elevations)

obtained from tide gauges and coastal radar-derived surface currents, and passive tracer maps

obtained from geostationary ocean color imagery. The coastal surface currents are decomposed

into current components associated with stream functions and velocity potentials, and their stream

functions are comparable with mesoscale SSHs and contain finer scale features, i.e., submesoscale

fronts and eddies, which are supported by Chlorophyll maps having hourly and 500-m resolution.

Some of coastal altimetry data exhibit consistent mesoscale and submesoscale features and have a

reasonable agreement with passive tracer maps as well.
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3. Evaluation of the estimated field
Two factors may affect the estimation of velocity potential and stream function; The regularization

factor (a) and the sampling density, which is the number of x- or y-coordinate grids within the

decorrelation length scale (lx / dx, ly/ dy). We verify the range of a and sampling density that

velocity potentials and stream functions estimated properly. Since there are the largest fluctuation of

the differences at the boundaries, statistic values for the boundaries are considered.
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4. Conclusion
We studied a method to derive the velocity potentials and stream functions from an idealized

velocity field model. To evaluate the method, the estimated fields are compared with the model

fields. The ranges of the regularization factor and the sampling density are determined to converge

the differences to zero. For further study, we will estimate velocity potentials and stream functions

by applying Helmholtz decomposition in wavenumber domain.

2. Scalar fields estimation
Idealized model has 3 fields; velocity potential, stream function, and velocity vector fields. The

scalar fields have zero spatial means and are laid on Arakawa C grid. Since velocity is a

differentiation of the velocity potentials and the stream functions, a matrix equation can be

formulated.

𝐮 = 𝐆𝐦,

where m is scalar fields (𝑚 = 𝜙 𝜓 𝑇) and G is a differential matrix. A fundamental way to estimate

m is to minimize the error variance (𝐽 𝐦 = 𝐮 − 𝐆𝐦 𝑇(𝐮 − 𝐆𝐦)/2). In order to avoid the typical

singularity problem of the method, Tikhonov regularization term is applied to the solution.

 𝐦 = 𝐆𝑇𝐆 + 𝛼  𝜆𝐈
−1
𝐆𝑇𝐮,

where a denotes the regularization factor,  𝜆 indicates mean of eigenvalues of 𝐆𝑇𝐆, and I denotes

identity matrix. 𝛼  𝜆 compensate the negative eigenvalues in the 𝐆𝑇𝐆 matrix.

Figure 2: (a to c) Velocity potential (f), (d to f) stream function (y), and (g to i) current vector fields

(u). Colors represent the scalar values and arrows indicate the current vectors. (a), (d), and (g):

model, (b), (e), and (h): estimated fields, and (c), (f), and (i): their differences. Shared colorbar is

ranged from -2 𝑘𝑚2/ℎ to 2 𝑘𝑚2/ℎ for the true and the estimated fields, and from -0.2 𝑘𝑚2/ℎ to 0.2

𝑘𝑚2/ℎ for the differences. Overlaid arrows at f and y are the velocity components obtained from

each scalar field. Resolution (dx, dy) is 0.6 km by 0.6 km and a is 10e-5.
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The velocity component fields induced from velocity potentials (figure 2a, 2b, and 2c) and stream

functions (figure 2d, 2e and 2f) have normal and tangential direction to their contours, respectively.

There are some differences between true and estimated fields (figure 2c, 2f and 2i). Especially, the

differences at boundaries of the fields seem to be significant compare to the inside of the fields.

Figure 3: (a and b) Means and (c) standard deviations of the velocity potential and stream function

differences with log-scaled regularization factor. Red and blue lines represent the velocity potentials

and the stream functions, respectively. (d) Means of the velocity difference amplitudes. Those

graphs are driven from (a) the whole area and (b, c, and d) the boundaries of the fields.

Means of the total scalar field differences (figure 3a) converge to 0 for the a larger then 10e-12. The

large mean for the a smaller than 10e-12 may be caused by not enough compensations for

negative eigenvalues in 𝐆𝑇𝐆 matrix.

Means (figure 3b) and standard deviations (figure 3c) of the scalar field differences at the

boundaries are rising for the a larger then 10e-4. Since regularization factor reduce the amplitude of

the estimated fields, the absolute values of the differences are increasing with a. the mean of the

velocity difference amplitudes (figure 3d) shows the similar aspect since the velocity differences are

proportional to the field differences.

3.1. Evaluation of regularization factor
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Helmholtz theorem states that vector fields in a two dimensional space can be decomposed into a

sum of two vector fields which can be expressed as derivations of two scalar fields; the velocity

potentials and the stream functions.

𝐮 = 𝐮𝜙 + 𝐮𝜓 = 𝛻𝐻𝜙 + 𝐤 × 𝛻𝐻𝜓,

where u, 𝐮𝜙, and 𝐮𝜓 denote total, velocity potentials driven, and stream functions driven velocity

fields (𝐮 = 𝑢 𝑣 𝑇 , 𝐮𝜙 = 𝑢𝜙 𝑣𝜙
𝑇
, 𝐮𝜓 = 𝑢𝜓 𝑣𝜓

𝑇
), respectively. T represents transpose of the matrix,

and 𝛻𝐻 indicates horizontal spatial derivation (𝛻𝐻 =
𝜕

𝜕𝑥
𝐢 +

𝜕

𝜕𝑦
𝐣).

(1)

1. Introduction
This research aims to compare submesoscale stream functions and sea surface heights. In this

poster, we present the estimation of stream functions and velocity potentials from idealized currents

model as a preliminary step.
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Figure 1: Conceptual diagram of this research. h, f, and y denote the sea surface height, the

velocity potentials, and the stream functions, respectively. Hats indicate the estimated values.
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3.2. Evaluation of sampling density

Figure 4: (a and b) Means and (c) standard deviations of the velocity potential and stream function

differences with sampling density. Red and blue lines represent velocity potentials and stream

functions, respectively. (d) Means of the velocity difference amplitudes. Those graphs are driven

from (a) the whole area and (b, c, and d) the boundaries of the fields.

Figure 4 presents the influences of oversampling and coarse sampling. The means of the total

scalar fields (figure 4a) are almost zero. Since 1 is the minimum sampling density, there may be no

singularity induced by coarse sampling.

Means of the velocity potential and stream function differences at boundaries (figure 4b) converge

to 0 after the sampling density reaches to 5. Moreover, decaying slops of the standard deviations

(figure 4c) are significant while sampling density ranges from 1 to 5. Thus, at least 6 samples in the

decorrelation length scale are demanded to estimate velocity potentials and stream functions.

Converging range of the velocity difference mean (figure 4d) is larger then scalar field; from 4 to 10.
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