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ABSTRACT

This paper addresses how well a two-dimensional orthogonal vector current field can be reconstructed

from a set of nonorthogonally and irregularly sampled scalar velocity data. High-frequency radar (HFR)-

derived surface radial scalar velocities are sampled on a polar or elliptical coordinate grid as a directional

projection of two-dimensional vector currents for a viewing angle of the individual HFRs. Synthetic radial

velocity maps are generated by sampling two-dimensional surface vector currents obtained from a simple

spectral model and a realistic regional circulation model on the polar or elliptical grid points configured

similarly as the operational HFRs. Then, the sampled radial velocity maps are combined into a vector current

field using inverse methods: least squares fitting and optimal interpolation. In this paper, uncertainty and

misfit are defined as the degrees of insufficiency to resolve the vector current and the difference between the

true and estimated vector currents, respectively. The uncertainty and misfit are evaluated in terms of several

simulation parameters built into the simple spectral model and the degrees of the quality and the observa-

tional error of the radial velocity maps associated with the simulated missing data and noise level, re-

spectively. A greater number of missing data and higher observational errors correspond to an increase in the

standard deviation of the misfit and a significant reduction in the effective spatial coverage of the vector

current fields. This paper provides technical details for resolving a vector current field and guidelines for the

practical design of the spatial sampling of the current field using the HFRs.

1. Introduction

Observational instruments used for oceanographic

sampling are technically unique, which can affect the

way to grid the sampled data and to estimate the cor-

responding errors. For example, satellite altimeters re-

port sea surface heights (SSHs) along a repeat-orbit

path that covers the entire globe within a period of less

than 10 days. Gridded SSHs and geostrophic currents

are obtained from the along-track SSHs using objec-

tive mapping in time and space (e.g., Leben et al. 2002;

Le Traon et al. 1998; Ducet et al. 2000; Wilkin et al.

2002). A shore-based high-frequency radar (HFR),

via the interpretation of Bragg-backscattered radar

signals, reports a time-averaged radial velocity map with

O(1210)-km spatial spacing in a polar coordinate grid

for the monostatic configuration or in an elliptical co-

ordinate grid for the bistatic and multistatic configura-

tions, which consist of the current components that are

projected onto a radar bearing angle. Thus, a single two-

dimensional vector solution requires the radial veloci-

ties from at least two radars (e.g., Crombie 1955; Barrick

et al. 1977; Lipa and Barrick 1983; Paduan and Graber

1997; Kim et al. 2008; see appendix A).

In ocean sensing instruments, the observational error

is a combination of the sampling error, measurement

error, mapping error, and systematic error. The sam-

pling error, which is related to finite sampling or the

subsampling of a continuous and whole field, is defined

as the difference between the true value and the sam-

pled data in a view of how well the sampled field rep-

resents the true field (e.g., Bendat and Piersol 2000;

Stewart 2006). Themeasurement error is associatedwith

the inaccurate treatment of selected samples andCorresponding author: Sung Yong Kim, syongkim@kaist.ac.kr
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depends on the sensors. The mapping error represents

the difference between the true and gridded data asso-

ciated with the spatial and temporal smoothing

(e.g., Bretherton et al. 1976; Wunsch 1996; Emery

and Thomson 1997). Geometric dilution of precision

[GDOP; see section 3c(1) for more details] can be an

example of the systematic error because the GDOP

characterizes the intrinsic limitations of an observa-

tional system resulting from the geographical constel-

lation or spatial configuration of individual subsystems

when the observational system is composed of individ-

ual subsystems (e.g., Pierce et al. 1948; Wells et al. 1986;

Prandle 1991; Chelton and Schlax 1994; Chapman et al.

1997; Greenslade et al. 1997; Levanon 2000). However,

these elements of the observational error are not in-

dependent or clearly separable in certain cases de-

pending on the instruments.

For example, errors in the surface current measure-

ments using the HFRs can be described by 1) the ob-

servational error of the radial velocities and 2) the

uncertainty (n or k; see section 2c formore details) of the

vector currents caused by mapping of the radial veloci-

ties into a vector current. First, the observational error

of the radial velocities includes the sampling error and

measurement error of the radial velocities, which may

not be clearly differentiated in the observed radial ve-

locities because both errors are reported as a single term

as part of the time-averaged discrete radial velocity at

the ocean surface. However, when the surface radial

velocities are sampled from the idealized and numeri-

cal model outputs, the measurement error caused by

malfunctions of the instrument can be eliminated and

the sampling error can be identified. The sampling

error is related to how well the sampled data at finite

spatial and temporal resolutions represent the true field

because the observed radial velocity is a spatially aver-

aged value within individual polar or elliptical co-

ordinate patches, wherein areas increase with a greater

range from the radar site (e.g., Kim et al. 2008). Second,

the uncertainty (n or k) of the vector currents are as-

sociated with the mapping error and systematic error.

For example, in the extraction of a single two-

dimensional vector solution from the multiple radial

velocities using optimal interpolation (OI), the error

covariance indicates the covariance of the mapping

error, which is implemented with the observational

error of the radial velocities [see Eqs. (1) and (13)]. In

addition, as part of the systematic error, the GDOP

results from the spatial arrangement of the individual

HFRs contributing radial velocity data to the vector

current map (e.g., Chapman et al. 1997; Levanon 2000).

Thus, the GDOP can be defined as the uncertainty of

the least squares fit (LSF)-mapped vector currents and

smeared in the uncertainty of the OI-mapped vector

currents as partial information (e.g., Kim et al. 2008).

Deriving the orthogonal vector components from the

nonorthogonally and irregularly sampled velocity data has

been a difficult problem in oceanographic data analyses

as a result of the increased error in certain geometries (e.g.,

O’Keefe 2005; Yoo et al. 2017; Cosoli and Bolzon 2015).

Note that nonorthogonally means that the orthogonal

projections of the vector are not available, and irregularly

means that the sample spacing is irregular and the in-

dependent vector projections are not available at the same

point. The errors of the geostrophic velocities that were

estimated from the satellite along-track SSHs were eval-

uated using a spectral analysis of the high-resolution ocean

circulation model outputs (Leeuwenburgh and Stammer

2002). The significant spatial and temporal inhomogeneity

in the mapping error may generate unrealistic and spuri-

ous oceanographic features (Chelton and Schlax 2003;

Schlax and Chelton 2003). Kim et al. (2008) reported the

mathematical relevance and performance of the two in-

verse methods (LSF andOI) in extracting a vector current

map from the HFR-derived radial velocity maps. Addi-

tionally, Yoo et al. (2017) focused on the covariance esti-

mates of the orthogonal vector currents directly from the

HFR-derived radial velocities without any redundant

steps, which aligns with the estimate of the kinematic and

dynamic quantities directly from the radial velocity maps

addressed elsewhere (e.g., Kim 2010).

The primary objectives of this work are to 1) de-

termine whether imperfect, nonorthogonal, and spa-

tially separated scalar velocity data contain sufficient

information to reconstruct a vector current field and

2) investigate the influence of the missing data and the

observational error of the radial velocities, which can be

differentiated from the other technical studies men-

tioned above (e.g., Kim et al. 2008; Kim 2010; Yoo et al.

2017). In the early stage of the use of HFR-derived

surface currents in scientific research, there were in-

consistent current measurements compared with other

in situ current observations [e.g., the Coastal Ocean

Dynamics Experiment (CODE) in the 1980s]. Along

with recent technical developments, the capability and

feasibility of the HFRs have been improved up to the

level that theHFR-derived surface currents capture well

the responses to the geophysical forces (e.g., tides,

winds, and low-frequency forcing) (e.g., Chavanne et al.

2007; Kim et al. 2011; Paduan and Washburn 2013;

Kirincich 2016). However, whether the scalar radial

velocity maps sampled from the HFRs contain sufficient

information to reconstruct the real signals has not been

evaluated, which was not discussed in Kim et al. (2008)

because they focused on several aspects of the chosen

inverse methods and their performance. In addition, the
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uncertainty of the vector currents was not clearly de-

fined. For instance, it was not discussed how the obser-

vational error of the radial velocities is propagated and

implemented in the vector current estimates.

To these ends, we obtain the true vector current fields

from the model outputs (e.g., simple spectral and re-

alistic numerical models); sample them as the radial

velocity maps; combine the radial velocity maps into the

vector current maps; and, finally, compare the true and

estimated vector current fields. To better evaluate the

performance of the reconstruction, the missing data and

the observational error in the radial velocities are ad-

ditionally simulated in the sampled radial velocity maps

(see section 2b). As a metric to evaluate whether the

sampled radial velocity maps contain sufficient in-

formation for reconstructing the vector currents, we

propose the (spatially averaged or individual) ensemble-

averaged misfit between the true and estimated currents

[Eqs. (23) and (25)]. This work can be complementary to

what O’Keefe (2005) and Cosoli and Bolzon (2015)

conducted in the vector current extraction using LSF in

terms of the radar geometry, flow patterns, and various

error sources. Note that the subgrid-scale processes are

not included in this work (e.g., mapping errors that arise

from using a single value to represent the varying ve-

locity over a single cell).

As minor notes, the grid from which the radial ve-

locities are sampled is referred to as the polar coordinate

in the following section based on the monostatic con-

figuration. Additionally, the technique proposed in this

paper is applicable to a phased-array radar system using

beam forming [e.g., Wellen Radar (WERA) systems]

with limitations because some of the phased-array sys-

tems sample the radial velocities directly onto a Cartesian

grid. In others cases, the radial velocities derived from the

phased-array radars have been reported on the polar or

elliptical coordinate grid for further generic applications,

such as data assimilation with numerical models (e.g.,

the WERA system at the University of Hawaii) and the

quality assurance and quality control (QAQC) of the

radial velocities (e.g., Yoo et al. 2017).

The remainder of this paper consists of four sections. In

section 2we describe the simulations used to extract a vector

current field fromtworadial velocitymapsobtained fromthe

simple spectral model and to evaluate the uncertainty in

terms of the simulation parameters in themodel. In section 3

we explain basic information regarding the sampling of the

radial velocities from the true vector current fields obtained

from realistic numerical simulations, and then we evaluate

the estimated and true vector current fields with the data

quality of the radial velocity maps and the degrees of the

observational errors. In sections 4 and5wediscuss the results

and present our conclusions, respectively.

2. Idealized simple spectral model

a. True vector currents

In this section the true vector current fields are ob-

tained from 1) an analytic solution that represents uni-

form, horizontal shear, or (Rankine) vortical flow patterns

(e.g., Kundu and Cohen 2002); and 2) a spectral model

that is defined by either a wavenumber-domain energy

spectrum or a physical-domain covariance function (see

appendixA formore details).Although the spectralmodel

can be formulated to include variance in both the wave-

number and frequency domains [see Yoo et al. (2017) for

more details], in this paper each true vector current field is

generated independently in time. Examples of the true

vector current fields having horizontal shear and vortical

flow patterns sampled on a 1-km spatial resolution grid

(Dl 5 1km) are presented as black arrows in Figs. 1a and

1b (see Table 1 for the simulation parameters). The de-

tailed spatial structures in the true vector current fields are

well observed at a grid of 1-km spatial resolution.

b. Sampling and simulating the radial velocities

A radial velocity r at a radial grid point with a bearing

angle u is presented as a sum of the projection of the two

true orthogonal components (u and y) onto the bearing

angle and an observational error of the radial velocity �

as follows:

r5 uyg1 � (1)

5 u cosu1 y sinu1 � (2)

5 ju1 iyj cos(u2 u)1 � , (3)

where g5 [cosu sinu]y is the directional unit vector, and

u5 [u y]y and u5 arctan(y/u) denote a true vector cur-

rent and its direction at the sampling location of interest,

respectively (y is the vector transpose or matrix trans-

pose). Because the true vector current components are

defined in a continuous horizontal space within a do-

main, the radial velocities at arbitrary locations are

easily found via a simple mathematical conversion [Eq.

(2)]. A single two-dimensional vector solution requires

at least two independent radial velocity data obtained

from the individual radars. For reference, a discussion of

how a single radial velocity map is used to reconstruct a

vector current map is presented in appendix A.

1) SPACING FOR THE SPATIAL SAMPLING OF THE

RADIAL VELOCITIES

The radial velocities (blue and red arrows in Figs.

1a and 1b) are sampled on polar coordinate grids

that have a range spacing of 1 km (Ds5 1 km) and an

azimuthal spacing of 58 (Du5 58) from two radars

(R1 and R2) located along the shoreline with a
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FIG. 1. (a),(b) Two examples of the simulated true vector current fields (black) having horizontal shear and

vortical flow patterns on a 1-km spatial resolution grid (Dx 5 1 km) and their radial velocity maps (blue and red)

sampled on polar coordinate grids (Ds 5 1 km, Du 5 58) from two radars located along the shoreline, which are

separated by 20 km (d5 20 km). The radial velocity maps of the shear and vortical flow fields contain 30% (z5 0:3)

and 40% (z5 0:4) of missing data, respectively. (c),(d) Estimated vector current components (u and y; m s21) along

a cross-shore line [green lines in (a) and (b)] using LSF andOI. An identical search radius of 4 km (ba 5bb 5 4 km)

is applied to LSF and OI. (e),(f) GDOPs [n for LSF; Eq. (5)]. (g),(h) Normalized uncertainties [k for OI; Eq. (20)]

(see Table 1 for the simulation parameters).
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separation distance of 20 km (d5 20 km). The ideal-

ized simulations mimic an observational system using

two 25-MHz (150-kHz bandwidth) radars that have an

effective maximum offshore range of 35 km, a range

spacing of 1 km, and a range of bearing angle of 1308.
However, the simulated range of bearing angles (908)
and the radar maximum offshore range (20km) may not

affect the overall evaluation because we evaluate the

true and estimated vector currents along a cross-shore

line in the middle of the two radars under given inverse

methods.

2) IMPLEMENTATION OF THE MISSING DATA AND

OBSERVATIONAL ERROR OF THE RADIAL

VELOCITIES

One parameter for the data quality z is defined as the

ratio of the number of missing radial data to the number of

the total radial data.Because the uncertainty varieswith the

data quality—that is, the conditions of the missing radial

data [see section 2d(1)]—two different cases of the data

quality are simulated in the horizontal shear (z5 0:3) and

vortical (z5 0:4) flow fields, which leads to the different

uncertainties in the vector current solutions.

The other parameter for the noise level p of the ra-

dial velocities is defined as the ratio of the noise vari-

ance to the variance of the true currents, which is the

inverse of the signal-to-noise ratio (SNR; p5 1/SNR).

The observational error of the radial velocities is as-

sumed to be random noise, that is, a noise floor level of

the observations regardless of any physical quantities

of the true vector current field (e.g., Paduan and

Graber 1997). For example, the zero observational

noise of the radial velocities is applied to the simulated

flow fields (p5 0; Figs. 1a and 1b), which indicates the

infinite SNR.

c. Spatial mapping of the radial velocities and
associated uncertainty

LSF andOI are used to estimate a vector current from the

multiple radial velocities. As an unbiased estimator under the

assumption of an infinite SNR, LSF adopts a spatially seg-

mented correlation function, which implies a perfect corre-

lation between the radial velocities within a search radius ba

from a rectangular grid point of interest, and with no corre-

lations outside of that search radius. Conversely, OI uses a

spatially continuous correlation function and weights the

contribution of the radial velocities as a function of distance

from a rectangular grid point of interest, that is, assuming the

finite SNR as a biased estimator [see Kim et al. (2008) for

more details]. Although a search radius bb is implemented in

OI, it is designed to exclude the contributions of the radial

velocities thathavea lowcorrelationwith the radial velocityat

the estimation point and to have better performance in solv-

ing inverse problems, which is different from the usage of the

search radius in LSF. Because the two approaches have been

investigated thoroughly elsewhere (Kim et al. 2008), we ex-

plicitly compare the uncertainties of the estimated vector

currents in the two methods. Among the parameters for the

vector currentmapping, an identical search radius inLSF and

OI is chosen as 4km (ba 5bb 5 4 km) to facilitate consistent

comparisons under the same conditions of the participating

radial velocities within the search radius (Fig. 1; see Table 1

for the simulation parameters).

The vector current solutions are estimated on a grid of

the cross-shore line with a resolution of 1 km (Dl5 1 km;

a green line in Figs. 1a and 1b), which is identical to the

TABLE 1. Parameters in the idealized and realistic simulations in Figs. 1, 3–10, 12, 13, and B1–B3 are listed as follows: a separation

distance (d, km), range spacing (Ds, km) and azimuthal spacing (Du, 8) of the radial grid, spacing of the rectangular grid (Dl, km), data

quality (z), noise level (p), search radii (ba and bb, km) in LSF and OI, and an isotropic decorrelation length scale (l5lx 5ly, km) in OI.

Simulations are conducted with combinations of a single parameter with discretely changing values and the rest of the parameters with a fixed

value for the control simulations (boldface values for Figs. 3–10 and asterisked values for Figs. B1–B3). Note that the idealized simulations

mimic the blueprint of an observational system using two 25-MHz (150-kHz bandwidth) radars, which have an effective maximum offshore

range of 35 kmand a range spacing of 1 km, respectively, and the true vector current fields arewell resolved at a grid of 1-km spatial resolution.

Idealized simulations Realistic simulations

Parameters

Fig. 1 (Fig. B1*)

for a shear flow

Fig. 1 (Fig. B1*)

for a vortical flow

Figs. 3–6 (Figs. B2* and B3*) and

Figs. 7–10 for a vortical flow Fig. 12 Fig. 13

d 20 20 8, 12, 16, 20*, 24, 28, 32 — —

Ds 1 1 0.5, 0.75, 1*, 1.25, 1.5, 1.75, 2 — —

Du 5 5 2, 3, 4, 5*, 6, 7, 8 5 5

Dl 1 1 0.5, 1*, 1.5, 2, 2.5, 3, 3.5, 4 6 6

z 0.3 0.4 0, 0.1, 0.2*, 0.3, 0.4, 0.5, 0.6 0, 0.2, 0.4 0.2

p 0 0 0*, 0.05, 0.1, 0.15, 0.2, 0.25 0 0.1, 0.2, 0.3

ba 4 (1.5*) 4 (1.5*) 1, 1.5*, 2, 2.5, 3, 3.5, 4, 4.5 5, 14 5, 14

bb 4 4 2, 3, 4*, 5, 6, 7 14 14

l 2 2 0.5, 1, 1.5, 2*, 2.5, 3, 3.5, 4 10 10
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spacing of the true rectangular grid. The region near the

baseline, which is a straight line between the two radar

sites, is an area where it is not possible to estimate the

vector solutions from nearly parallel radial velocities

because the vector solutions normal to the baseline are

weakly constrained (e.g., Lipa and Barrick 1983; Graber

et al. 1997; Kim et al. 2011; Kim 2015).

1) GEOMETRIC DILUTION OF PRECISION IN LSF

A vector current (û; 2 3 1 vector) estimated from

radial velocities (r;La 3 1 vector) using unweighted LSF

is defined as

û5 (GyG)21Gyr5H
a
r , (4)

where G5 [g1 g2, . . . , gLa
]y is a concatenated matrix of

the directional unit vectors of the participating radial

velocities [La 3 2 matrix; Eq. (4)]. The GDOP is defined

by the diagonal components of the inverse of a geo-

metric covariance matrix (GyG; 23 2 matrix) as follows:

n5 (GyG)21 5

�
n
uu

n
uy

n
yu

n
yy

�
, (5)

where nuu and nyy are GDOPs in the x and y directions,

respectively,

n
uu
5

1

det(GyG)
�
La

l51

sin2u
l

and (6)

n
yy
5

1

det(GyG)
�
La

l51

cos2u
l
, (7)

and det denotes the determinant of a square matrix.

Thus, the total GDOP associated with La radial veloci-

ties is given by

n5 n
uu
1 n

yy
5

L
a

det(GyG)
, (8)

which is identical to the geometrical dilution of statisti-

cal accuracy (GDOSA) normalized by the variance of

current components (Barrick 2002).

TheGDOPdepends on 1) the number of available radial

velocities (La) within the search radius (ba) and 2) the

difference between the bearing angles (Du5 uj 2 uk; j and

k5 1, 2, . . . , La) [Eqs. (6) and (7)] (e.g., O’Keefe 2005;

Kim et al. 2008). For instance, the probability density

functions (PDFs) of the number of HFR-derived radial

velocitieswithin the two search radii (ba 5 5 and 14km)off

Oregon for a period of two years (2007–08) show a domi-

nance at 3 and 8, respectively (Fig. 2a). The PDFs of the

corresponding GDOPs indicate smaller GDOPs for a

larger number of the available radial velocities (Fig. 2b).

Similarly, the GDOPs are simulated with multiple com-

binations of bearing angles that have an azimuthal spac-

ing of 18, which is the minimum azimuthal spacing in the

observations using operational HFRs. The bearing angles

are uniformly generated between 08 and 3608 under a

given number of radial velocities for 10000 cases. The

minima L21
a and maxima § 2 of the GDOPs decrease

with the number of available radial velocities [Figs. 2c

and 2e; Eqs. (9) and (10)], which can be used as the upper

and lower bounds of the GDOPs:

1

L
a

# n
uu
# § 2(L

a
) and (9)

1

L
a

# n
yy
# § 2(L

a
) . (10)

Note that the cases in which the condition number of the

geometric covariance matrix (GyG) is higher than 1010 are

excluded to ensure stable estimates in the matrix inversion

(Fig. 2).

The PDFs of the GDOPs approach a lognormal distri-

bution as the number of participating radial velocities in-

creases (Figs. 2d and 2f). The GDOP has been used as a

cutoff value for spurious and inconsistent vector estimates

(e.g., Graber et al. 1997; O’Keefe 2005; Chavanne et al.

2007). The GDOP, a unit-less quantity, varies in time and

space as the number of the available radial velocity data

vary in time and space caused by the missing radial veloc-

ities (e.g., Chapman et al. 1997; Cook and Shay 2002; Shay

et al. 2007). Thus, GDOPs should be addressed carefully

when they are used as a QAQC tool in the operational

system and scientific data analysis.

2) MAPPING ERRORS IN OI

A vector current (û; 2 3 1 vector) is optimally in-

terpolated from radial velocities (r; Lb 3 1 vector)

using a data–model covariance (covdm; Lb 3 2 matrix)

and data–data covariance (covdd; Lb 3Lb matrix):

û5 covydmcov
21
dd r , (11)

5 (hruyi)y(hrryi)21 r5H
b
r , (12)

where covdm is the covariance between a vector current at

the grid point of interest and radial velocities, and covdd is

the covariance between radial velocity data themselves.

The estimated vector currents are expressed with

û5 (gyj huj
uy
i i)y(gyj huj

uy
kigk 1 heeyi)21r , (13)

where û5 ûi 5 [ûi ŷi]
y is a vector current at the ith grid

point of interest and r5 [r1 r2, . . . , rLb
]y is the radial

velocities participating in the estimate of the vector

current ( j, k5 1, 2, . . . , Lb).
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Assuming the vector current field is locally homoge-

neous, the covariance of the vector current components

huuyi can be simplified with the standard deviations of

the currents s as a function of the location and the

spatial correlation r as a function of the spatial lags:

hu(x)u(x1Dx)yi5s(x)s(x1Dx)r(Dx) . (14)

The error covariance heeyi can be simplified as a di-

agonal matrix scaled by a scalar noise level (g2; a squared

quantity) under an assumption of the incoherent noise of

FIG. 2. (a),(b) PDFs of the number of HFR-derived radial velocities (La) within two search radii (ba 5 5 km and ba 5 14 km) off Oregon

for a period of two years (2007–08) and the corresponding GDOPs (nuu and nyy) of the vector currents estimated using LSF. Shown in

(c)–(f) are minima and maxima of the GDOPs (nuu and nyy) as a function of the number of participating radial velocities and their PDFs

based on the proposed simulations. Note that the spacing of bearing angles is assumed to be 18, and the cases where the condition number

of the geometric covariance matrix (GyG) is higher than 1010 are excluded. (c) Minima of the GDOPs (nuu and nyy , linear scale).

(e) Maxima of the GDOPs (nuu and nyy , log10 scale). (d),(f) PDFs of the GDOPs (nuu and nyy , log10 scale) as a function of the number of

participating radial velocities (color); they share a color bar on the bottom.
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the radial velocities at individual radial grid points. The

noise level varies in time and space depending on the

sea state, the external noise from the ionospheric effects or

other radio-frequency transmitters nearby, the repair state

of the electronics, and the aging of the receiving antenna.

However, a constant value representing the noise level over

the given period (e.g., two years) is applied in this paper.

For instance, a standard deviation of the sum of the nearby

radial pairs obtained from multiple radars [see Kim et al.

(2008) andKim (2015) formore details]—that is, the sumof

the sampling error and the measurement error of the ob-

served radial velocities in the area of interest—is used as g.

Thus, the estimated vector currents û are given by

û5 gyjsi
s
j
r(Dx

ij
,Dy

ij
)

h iy
gyjsj

s
k
r(Dx

jk
,Dy

jk
)g

k
1d

jk
g2

h i21

r ,

(15)

where djk denotes the Kronecker delta, and the variance

of currents at individual locations of i and j can be

approximated with the variance of currents, that is,

sisj 5sjsk ’s2.

An example of the exponential correlation function

[r(Dx, Dy)], which is frequently used for mapping sub-

mesoscale surface current fields (e.g., Kim et al. 2008,

2011), is derived as follows:

r(Dx,Dy)5 exp

 
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2

l2
x

1
Dy2

l2
y

s !
, (16)

where lx and ly denote the decorrelation length scales in

the x and y directions, respectively.

The uncertainty x of the optimally interpolated vec-

tor currents, which corresponds to Eq. (5) in LSF, is

defined as

x5
g2

s2
(cov

mm
2 covydmcov

21
dd covdm)5

"
x
uu

x
uy

x
yu

x
yy

#
, (17)

where

0#x
uu
# g2 and (18)

0# x
yy
#g2 . (19)

FIG. 3. Ensemble-averaged GDOPs (hnuui) of the LSF-mapped u component estimated from the radial velocity maps

(Fig. 1b) are evaluatedwith the (a) separationdistance (d5 8, 12, 16, 20, 24, 28, and32km), (b) range spacing (Ds5 0.5, 0.75, 1,

1.25, 1.5, 1.75, and 2km), (c) azimuthal spacing (Du5 28, 38, 48, 58, 68, 78, and 88), and (d) spacing of the rectangular grid (Dl5
0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4km). Simulations are with combinations of a single parameter with discretely changing values and

the rest of the parameters with a fixed value for the control simulations (see Table 1 for the simulation parameters).
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Note that x has the units of velocity squared. Addition-

ally, the normalized uncertainty k (0# k# 1) is given by

k5
x

g2
5

�
k
uu

k
uy

k
yu

k
yy

�
, (20)

which is used as a criterion for QAQC of the estimated

vector currents.

d. Evaluation

1) OVERVIEW

We consider the uncertainty [�e in Eq. (21)] and misfit

[ue in Eq. (23)] as metrics in the evaluation of the re-

construction performance and evaluate them in terms of

1) a separation distance (d) between the two radars located

along the shoreline (y direction), 2) a range spacing (Ds)
and 3) an azimuthal spacing (Du) of the identical radial

grids of the two radars, 4) a constant spacing of the rect-

angular grid (Dl), 5) an indicator of the data quality (z), 6)

anobservational noise parameter (p) of the radial velocities,

7) the search radii (ba and bb) in LSF and OI, and 8) an

isotropic decorrelation length scale (l5lx 5 ly) inOI (see

Table 1 for the simulation parameters):

�
e
5 �

e
(d,Ds,Du,Dl, z, p,b

a
,b

b
, l) and (21)

u
e
5 u

e
(d,Ds,Du,Dl, z, p,b

a
,b

b
,l) (22)

5 û2 u . (23)

The uncertainty of the vector current is a mathemat-

ical definition of the degrees of insufficiency to resolve

the true vector current, which is determined by the

participating radial velocities in the estimate of the

vector current components. In other words, the un-

certainty depends on 1) the difference of the bearing

angles of the radial velocities, 2) the spatial configura-

tion at the radial grid points (the constellation of the

radar system), and 3) the observational noise of the ra-

dial velocities. If the radial velocities participating in

estimating the vector currents at a fixed location are

identical, the uncertainty should be the same. Thus, the

FIG. 4. Ensemble-averaged GDOPs (hnuui) of the LSF-mapped u component estimated from the radial velocity

maps (Fig. 1b) are evaluated with the (a) data quality (z5 0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6), (b) noise level (p5 0,

0.05, 0.1, 0.15, 0.2, and 0.25), and (c) search radius (ba 5 1, 1.5, 2, 2.5, 3, 3.5, 4, and 4.5 km). Simulations are with

combinations of a single parameter with discretely changing values and the rest of the parameters with a fixed value

for the control simulations (see Table 1 for the simulation parameters).
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uncertainty varies with the conditions of the missing

radial velocities, which can be distributed in a non-

systematic or random way in time and space. However,

the misfit is defined as the difference between the

true and estimated values in this paper. Thus, the un-

certainty and misfit can be consistent or inconsistent.

For instance, a greater number of radial velocities and a

favorable combination of the bearing angles and geo-

graphical constellation for resolving the vector current

correspond to a smaller uncertainty, although they may

not guarantee the magnitude of the misfit because the

estimated vector currents can be close to or different

from the true vector currents.

The uncertainty (�e; n or k) of the vector current includes

the mapping error and systematic error. The uncertainty

n of the LSF-mapped vector currents is represented with

the GDOP without the mapping error resulting from no

spatial smoothing under the infinite SNR, and the

uncertainty k of the OI-mapped vector currents is in-

corporated with both mapping error and systematic error.

2) EXAMPLES OF THE ESTIMATED VECTOR

CURRENTS, (NORMALIZED) UNCERTAINTY,
AND MISFIT

Examples of the comparison between the true and

estimated vector current components and their (nor-

malized) uncertainty along a cross-shore line under the

simulation parameters in Table 1 using LSF and OI are

shown in Figs. 1c–h.

Near the baseline (x# 5 km), both LSF- and

OI-mapped u components, normal to the baseline,

have a high uncertainty and misfit. Conversely, the

OI-mapped y components, parallel to the baseline, have

lessmisfit than the LSF-mapped y components, although

the (normalized) uncertainty from both approaches is

relatively small.

FIG. 5. Ensemble-averaged misfits (huei3 10; m s21) of the LSF-mapped u component estimated from the radial

velocitymaps (Fig. 1b) are evaluatedwith the (a) separation distance (d5 8, 12, 16, 20, 24, 28, and 32 km), (b) range

spacing (Ds5 0.5, 0.75, 1, 1.25, 1.5, 1.75, and 2 km), (c) azimuthal spacing (Du5 28, 38, 48, 58, 68, 78, and 88), and
(d) spacing of the rectangular grid (Dl5 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4 km). Simulations are conducted with

combinations of a single parameter with discretely changing values and the rest of the parameters with a fixed value

for the control simulations (see Table 1 for the simulation parameters).
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Near the edge of the domain (x. 15 km), the OI-

mapped vector components tend to converge to zero,

and the LSF-mapped vector components are close to the

true values or have spurious values because insufficient

radial velocity data are available in that region (Figs. 1c

and 1d). The uncertainty of the y components is higher

than that of the u components in both LSF and OI

(Figs. 1g and 1h).

In the middle of the domain (5, x# 15 km), the un-

certainty of the estimated vector components is relatively

small because the density of the overlapped radial veloci-

ties from the two independent radars is higher than that in

the other sampling regions. However, the LSF-mapped

vector components have more bias when compared with

the true values (particularly the y component) than the

OI-mapped ones (Fig. 1d). Although the significant bias of

the magnitude and direction of the currents in the center of

the vortex can be expected, the uncertainty is dominantly

governed by the size of the overlapped area of the two ra-

dial velocity maps and is less sensitive to the flow pattern.

Because the GDOPs and uncertainty depend on the

number of the available radial velocities within the

search radius and the difference of their bearing angles,

the differences between Figs. 1e and 1f (Figs. 1g and 1h)

result from the fraction of missing data (z5 0:3 in

Figs. 1e and 1g; z5 0:4 in Figs. 1f and 1h).

3) COMPARISON OF THE VECTOR CURRENTS

ESTIMATED USING LSF AND OI UNDER

VARYING PARAMETERS

For the simplicity and efficiency of evaluation, the

ensemble-averaged (normalized) uncertainty (hnuui or

hkuui) and misfit (huei) of the LSF- and OI-mapped u

components obtained from the radial velocity maps in

Fig. 1b are examinedwith all seven (eight) parameters in

Eqs. (21) and (22), which are used in the estimates using

LSF (OI) in the idealized simulations (Table 1; Figs. 3–10).

Eachensemblemember is realized independently 100 times,

which provides stable simulation results to minimize

the biased influence of the data quality because of the

FIG. 6. Ensemble-averaged misfits (huei3 10; m s21) of the LSF-mapped u component estimated from the radial

velocity maps (Fig. 1b) are evaluated with the (a) data quality (z5 0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6), (b) noise level

(p5 0, 0.05, 0.1, 0.15, 0.2, and 0.25), and (c) search radius (ba 5 1, 1.5, 2, 2.5, 3, 3.5, 4, and 4.5 km). Simulations are

conducted with combinations of a single parameter with discretely changing values and the rest of the parameters

with a fixed value for the control simulations (see Table 1 for the simulation parameters).
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randomly distributed missing data. The individual sim-

ulations are conducted with combinations of a single pa-

rameter with discretely changing values and the rest of the

parameters with a fixed value for the control simulations

(boldface or asterisked values in Table 1).

In mapping of the u component using LSF (Figs. 3–6),

the ensemble-averaged uncertainty increases signifi-

cantly onshore and gradually offshore with an increase

of the given parameters (Figs. 3 and 4). The ensemble-

averaged misfit has an organized tendency to overesti-

mate (10, x# 20 km and x# 5 km) and underestimate

(5, x# 10 km) as the given parameters increase (Figs. 5

and 6). The shorter separation distance between the radars

yields less uncertainty and misfit because of better geom-

etry in the constellation of the radars to resolve the cur-

rents (Figs. 3a and 5a). The smaller range and azimuthal

spacings lead to less uncertainty as more radial velocities

within the given search radius participate in the estimate

(Figs. 3b and 3c). Similarly, the better data quality yields

less uncertainty (Fig. 4a). However, the misfit is barely

influenced by the spacing of the range, azimuth, rectan-

gular grid, data quality, and noise level because the radial

velocities within the given search radius are sufficient to

resolve the currents (Figs. 5b–d, 6a, and 6b). The reduced

search radius yields higher uncertainty and misfit, which

can be considered as the most sensitive factor affecting the

performance in the estimate of the vector currents (Figs. 4c

and 6c).

In mapping of the u component using OI (Figs. 7–10),

the quality of the estimated vector currents degrades

with longer separation distance between the radars be-

cause the shorter separation distances yield the higher

density of the overlapped radial velocities and the better

geometry by which to resolve the vector currents

(Figs. 7a and 9a). However, a separation distance of less

than 6km hinders resolving the flow fields because of

the inefficient constellation of the radar bearing angles.

When the range and azimuthal spacings increase, the

ensemble-averaged normalized uncertainty and misfit

increase because the radial velocity maps may not

FIG. 7. Ensemble-averaged normalized uncertainties (hkuui) of the OI-mapped u component estimated from the

radial velocity maps (Fig. 1b) are evaluated with the (a) separation distance (d5 8, 12, 16, 20, 24, 28, and 32 km),

(b) range spacing (Ds5 0.5, 0.75, 1, 1.25, 1.5, 1.75, and 2 km), (c) azimuthal spacing (Du5 28, 38, 48, 58, 68, 78, and 88),
and (d) spacing of the rectangular grid (Dl5 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4 km). Simulations are conducted with

combinations of a single parameter with discretely changing values and the rest of the parameters with a fixed value

for the control simulations (see Table 1 for the simulation parameters).
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resolve the given flow fields at these sampling scales

(Figs. 7b, 7c, 9b, and 9c). The spacing of the rectangular

grid does not significantly affect the uncertainty and misfit

(Figs. 7d and 9d). The uncertainty and misfit are highly

dependent on the quality of the radial velocitymap, that is,

the greater fraction of themissing radial velocity data leads

to the higher uncertainty and misfit (Figs. 8a and 10a).

Moreover, the uncertainty and misfit are not improved

with decorrelation length scales longer than 3km because

the dominant features of the given flow field are well re-

solved at that scale and the spatial smoothing in the esti-

mated flow fields can be minimal (Figs. 8b and 10b).

Although the uncertainty is nearly constant regardless of

the search radius (bb), the misfit decreases with the search

radius (Figs. 8c and 10c) becausemore radial velocities are

participating to resolve the flow fields and those radial

velocities do not contribute that much to effectively esti-

mating the true value. However, because the search radius

inOI is designed to reduce the computational burden in the

matrix inversion, its influence may not be considered as

a primary factor. When longer decorrelation length scales

are applied, the estimated u component has less uncertainty

and misfit (Figs. 8d and 10d).

4) SUMMARY

To make a sizable comparison of the (normalized) un-

certainty and misfit of the LSF- and OI-mapped vector

currents, we chose the identical search radii (ba5bb5
4km), which are 4 times as long as the rectangular grid

spacing (Dl 5 1km). In OI, this search radius barely af-

fects the estimates because the correlation at the search

radius is reduced effectively. Conversely, the LSF-mapped

vector currents under this search radius may yield a spa-

tially smooth field and less uncertainty because a greater

number of radial velocities participate in the vector cur-

rent estimates. Thus, a reduced search radius in LSF may

be required to avoid oversampling in the estimate of vector

currents. The examples of the estimated vector current

FIG. 8. Ensemble-averaged normalized uncertainties (hkuui) of the OI-mapped u component estimated from the

radial velocity maps (Fig. 1b) are evaluated with the (a) data quality (z5 0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6), (b) noise

level ( p5 0, 0.05, 0.1, 0.15, 0.2, and 0.25), (c) search radius (bb 5 2, 3, 4, 5, 6, and 7 km), and (d) an isotropic

decorrelation length scale (l5 lx 5ly 5 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4 km). Simulations are conducted with

combinations of a single parameter with discretely changing values and the rest of the parameters with a fixed value

for the control simulations (see Table 1 for the simulation parameters).
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components and uncertainty under the reduced search ra-

dius (ba 5 1:5 km) are discussed in appendix B. In addition,

themisfit of theLSF-mapped u component ismore biased in

space than the misfit of the OI-mapped u component is

(Figs. 3–10). In other words, the smoothly estimated vector

currents can be different from the true vector currents. Thus,

the uncertainty decreases and the misfit becomes signifi-

cantly large with an increase in the search radius. The un-

certaintyandmisfit canbeconsistentor inconsistentdepending

on the given information to extract the vector currents and

the spatial scales to fit under the chosen inverse methods.

3. Realistic numerical model

a. True vector currents

A realistic numerical simulation, using a Regional Ocean

Modeling System (ROMS) off the coast of Oregon and

Washington, provides maps of the surface currents (at the

surface layer) with 1-h temporal and 2-km spatial resolutions

for approximately one year (August 2008–August 2009) [see

Kim et al. (2014) for more details]. The simulation included

the freshwater discharge from the Columbia River. Al-

though themodel outputs and time intervals for the internal

calculation havemuchfiner temporal and spatial resolutions,

they are sampled at these resolutions (hourly in time

and 1-km scale in space) for the present work. With

the same approach as conducted in the idealized simula-

tions (section 2a), the numerical model outputs are used as

the substitutes for the true vector currents [see Eq. (3)].

Because the baselines are nearly aligned and embed-

ded in the concave coast of Oregon, the baseline in-

consistency and bad geometry in the radar constellation

appear near the coast and the edge of the domain, where

the nearly parallel radial velocities are found.

b. Sampling and simulating radial velocities

In the realistic simulations, the first four parameters

[d,Ds,Du,andDl inEqs.(21)and(22);Table1]arepredetermined

FIG. 9. Ensemble-averaged misfits (huei3 10; m s21) of the OI-mapped u component estimated from the radial

velocitymaps (Fig. 1b) are evaluatedwith the (a) separation distance (d5 8, 12, 16, 20, 24, 28, and 32 km), (b) range

spacing (Ds5 0.5, 0.75, 1, 1.25, 1.5, 1.75, and 2 km), (c) azimuthal spacing (Du5 28, 38, 48, 58, 68, 78, and 88), and
(d) spacing of the rectangular grid (Dl5 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4 km). Simulations are conducted with

combinations of a single parameter with discretely changing values and the rest of the parameters with a fixed value

for the control simulations (see Table 1 for the simulation parameters).
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because of limitations on the allocation of the operating

frequencies and bandwidths, and the choice of the HFR

installation related to the geographical permission. Thus,

the remaining parameters are simulated for the standard

deviation of themisfit (see section 3d). In this subsectionwe

report the spatial and temporal spacings in the operational

HFR-derived radial velocity maps and describe the pro-

cedures to implement the missing data and observational

TABLE 2. Detailed specifications of HFRs participating in the hindcast analysis are listed with the station name (regional name),

operating frequency ( fo; MHz), and transmitted bandwidth ( fb; kHz) of HFRs; and the range spacing (Ds; km), azimuthal spacing (Du; 8),
temporal spacing (Dt; h), and averaging time window (Dtw; h) of radial velocities; and the type of the radar beam pattern [measured (M)

and ideal (I)].

Station name (regional name) fo fb Ds Du Dt Dtw Radar beam patterns

LOO1 (Loomis Lake) 4.412 25.73 5.851 5 1.00 3.00 M

STV2 (Fort Stevens) 12.157 75.07 1.998 5 1.00 1.25 M

SEA1 (Seaside) 12.247 75.07 1.998 5 1.00 1.25 M

MAN1 (Manhattan Beach) 4.785 25.73 5.829 5 1.00 3.00 M

YHL1 (Yaquina Head) 4.785 25.73 5.825 5 1.00 3.00 M

YHS2 (Yaquina Head South) 12.157 75.07 1.998 5 1.00 1.25 M

WLD2 (Waldport) 12.233 75.07 1.998 5 1.00 1.25 I

WSH1 (Washburne) 12.147 75.07 1.998 5 1.00 1.25 M

WIN1 (Winchester Bay) 4.785 25.73 5.829 5 1.00 3.00 M

CBL1 (Cape Blanco) 4.785 25.73 5.829 5 1.00 3.00 I

PSG1 (Point St. George) 4.785 25.73 5.829 5 1.00 3.00 I

FIG. 10. Ensemble-averaged misfits (huei3 10; m s21) of the OI-mapped u component estimated from the radial

velocity maps (Fig. 1b) are evaluated with the (a) data quality (z5 0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6), (b) noise level

(p5 0, 0.05, 0.1, 0.15, 0.2, and 0.25), (c) search radius (bb 5 2, 3, 4, 5, 6, and 7 km), and (d) an isotropic decor-

relation length scale (l5lx 5 ly 5 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4 km). Simulations are conductedwith combinations

of a single parameterwith discretely changing values and the rest of the parameters with a fixed value for the control

simulations (see Table 1 for the simulation parameters).
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FIG. 11. (a),(b),(e),(f),(i),(j) Spatial correlations of the number of missing radial velocities. (c),(d),(g),(h),(k),(l) Spatial

correlationsof radial velocities.Tworeference locations (blackstar; offshoreandnearshore regions)ateachradar sitearechosen

to present the spatial structure of correlations. Correlations are shown for (top)MAN1, (middle) YHL1, and (bottom)WIN1.

All estimates are based on radial velocities at three radar sites off the Oregon coast for a period of two years (2007–08).
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FIG. 12. Standard deviation (j; cm s21) of the misfit between the estimated (LSF- and OI-mapped)

and true vector currents as a function of the data quality (z) without observational noise (p5 0). All

vector currentmaps are estimatedon a grid having a 6-kmspatial spacing (Dl5 6 km). (top) LSF-mapped

vector current fields (ba 5 5 km). (middle) LSF-mapped vector current fields (ba 5 14 km).

(bottom) OI-mapped vector current fields. (a),(d),(g) z5 0. (b),(e),(h) z5 0:2. (c),(f),(i) z5 0:4 (see

Table 1 for the simulation parameters). A yellow contour in the individual figures indicates the ef-

fective spatial coverage of HFRs off the Oregon coast for a period of two years (2007–08).
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FIG. 13. Standard deviation (j; cm s21) of the misfit between the estimated (LSF- and OI-mapped)

and true vector currents as a function of an observational noise level (p) under 20%missing data (z5 0:2).

All vector currentmaps are estimatedona grid havinga 6-kmspatial spacing (Dl5 6 km). (top)LSF-mapped

vector current fields (ba 5 5 km). (middle) LSF-mapped vector current fields (ba 5 14 km). (bottom)

OI-mapped vector current fields. (a),(d),(g) p5 0:1. (b),(e),(h) p5 0:2. (c),(f),(i) p5 0:3 (see Table 1 for the

simulation parameters). A yellow contour in the individual figures indicates the effective spatial coverage of

HFRs off the Oregon coast for a period of two years (2007–08).

780 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 35



errors in the realistic simulations based on the statistics of

the observed radial velocitymaps, which corresponds to the

data quality and noise level, respectively.

1) SPACING FOR THE SPATIAL AND TEMPORAL

SAMPLING OF THE RADIAL VELOCITIES

The azimuthal spacing and the number of the range bins

are simulated as the operational HFRs within the study

domain (e.g., 40 range bins and 58 azimuthal spacing).

The range spacing depends on the operating (sweeping)

frequency of the radar. For instance, the pairs of typical

operating (sweeping) frequency, given as 5MHz (30kHz),

13MHz (60kHz), and 25MHz (150kHz), correspond to

the range spacings of 5, 2.5, and 1km, respectively. Note

that the HFRs off the Oregon coast have been operated at

5MHz (25kHz) and 13MHz (75kHz), which translate into

6- and 2-km range spacings, respectively. The effective ra-

dar viewing angle exhibits the geographic dependence

of the HFR location relative to the shoreline. Specifi-

cally, based on the PDFs of the bearing angles of the

FIG. 14. The number of unique cases and uncertainties (or GDOPs) of vector currents (nuu and nyy) estimated

using LSF under the evenly and unevenly distributed radial velocities within a search radius when 15 radial ve-

locities (La 5 15) are available from three radars (K5 3), and each radar contributes five radial velocities (pk 5 5;

k5 1, 2, and 3). At least single radial velocity from each radar should be contributed, and 5000 independent sim-

ulations are conducted for each case. (a) The number of unique cases as a function of the excluded number of the

radial velocities within a search radius for uncertainty estimates. Evenly (red) and unevenly (blue) distributed cases

are denoted. (b),(c) PDFs of uncertainty of vector currents (nuu and nyy) as a function of the total number of the

radial velocities within a search radius; they share a color bar on the right. Black and colored curves denote the evenly

(La 5 3, 6, 9, 12, and 15) and unevenly distributed cases, respectively. (d),(e) A comparison of PDFs of uncertainties

(nuu and nyy) for the evenly (thick colors) and unevenly (paler colors) distributed cases for La 5 3, 6, 9, and 12.
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available radial solutions obtained from 10 HFRs off

the coast of Oregon (Table 2), the viewing angle of the

radars in this region covers from 1808T to 3108T from

true north (not shown).

To observe the coastal oceanic variability from the low-

frequency signals (e.g., seasonality) to the harmonics of

the tides, an hourly sampling time interval is recom-

mended, which corresponds to the Nyquist frequency of

12 cycles per day (cpd). The hourly radial velocity data

are obtained from multiple signal processing, including

averaging in time and space. Thus, the influence of the

temporal averaging of the radial velocities on the vari-

ance of the observed currents (e.g., sinc function modu-

lation because of boxcar averaging) is discussed

in appendix C, which will be helpful for HFR users to

configure a temporal averaging time window and to an-

alyze the postprocessed data for scientific research.

Next, we define the polar coordinate grids for the in-

dividual radars, including the range and azimuthal

spacing, and the bearing angle of the individual radars

(Table 2). We sample the radial velocities on the polar

coordinate grids from a true vector current field in the

same way as conducted in section 2b.

2) IMPLEMENTATION OF THE MISSING DATA AND

OBSERVATIONAL ERROR OF THE RADIAL

VELOCITIES

Before we implement the missing data and observa-

tional noise in the true radial velocities obtained from the

numerical model, we quantify these parameters in the

observed radial velocities over a period of two years

(2007–08) based on their temporal and spatial statistics.

The spatial correlations of the missing data, which were

estimated using the covariance of the data replaced by ones

for themissing data and zeros for the available observations

show a minimal level of particular spatial structures (e.g.,

Gaussian or exponential function) or coherent structures in

the range and azimuthal directions (first and second col-

umns in Fig. 11). The spatial correlations of the radial

velocities are consistent with the background surface cir-

culation patterns across the sites (e.g., spatially uniform or

long-termmean surface currents) because thewhite lines or

areas where the zero correlations appear are orthogonal to

the background currents (third and fourth columns in

Fig. 11). In the radial velocity observations, the fraction of

themissing data ranges from 20% to 40%depending on the

locations (not shown). Thus, we generate the locations of

the missing data in time and space as a random variable.

Three cases of the data quality are simulated as the ratio z

of the number of missing radial data to the total number

of radial solutions, which are given as 0, 0.2, and 0.4 (z 5 0,

0.2, and 0.4; see Table 1 for the simulation parameters).

To evaluate the influence of the data quality, the vector

currents are estimated with the sampled radial velocity

maps having zero observational noise (p5 0) (Fig. 12).

The observational error of the observed radial ve-

locities is quantified as approximately 10 cm s21 and is

represented by 0.1765 (p5 g2/s2 5 0:1765) because the

minimum correlation is equal to 20.85 when the paired

radial velocities are oppositely faced (e.g., Kim et al.

2008; Kim 2015):

r
min

52
s2

s2 1 g2
520:85, (24)

based on the standard deviation of the sum of the

nearby radial pairs obtained from multiple radars and

their correlations (Fig. B2 in Yoo et al. 2017). We

consider the observational error of the radial veloci-

ties as a sum of the sampling error and measurement

error. To evaluate the influence of the noise level, the

radial velocity maps with a constant level of missing

data (z5 0:2) and varying noise levels of 0.1, 0.2, and

0.3 (p5 0.1, 0.2, and 0.3; see Table 1 for the simulation

parameters) are simulated (Fig. 13).

c. Spatial mapping of radial velocities and associated
uncertainty

Regarding the choice of the parameters in the vector

current estimates using LSF and OI, two search radii in

LSF are chosen as 1) 5km to avoid potential over-

sampling of the surface currents and to set it less than the

spacing of the rectangular grid (ba 5 5 km) and 2) 14km

to simulate the operational system (ba 5 14 km). In OI,

the parameters are chosen as an isotropic exponential

function with decorrelation length scales (lx and ly)

of 10 km in the x and y directions; signal (s2) and noise

(g2) variance of 1600 and 40 cm2 s22, respectively;

and a search radius of 15 km, where the correlations

are effectively reduced [bb 5 14 km when r0 5 0:25;

see Kim et al. (2008) and appendix D for more details]

(see Table 1 for the other simulation parameters).

Note that the correlation function can be assumed to

be anisotropic depending on the principal component

of the regional circulation. Although a search radius

is not required in OI, it is proposed to minimize the

calculation time because the size of the inverting

matrix (covdd) depends on the number of radial ve-

locities Lb within the search radius. An exponential

function is chosen as the correlation function to set a

lower level of spatial smoothing than that of the

Gaussian correlation function. The influence of the

decorrelation length scales is insignificant if they are

longer than the size of the rectangular grid.

The spacing of the rectangular grid is proposed as

6 km (Dl5 6 km) in consideration of the minimum
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resolution of the true vector current fields (Dx5 2 km)

and the simplicity of the performance evaluation for the

entire Oregon coast, although a high-resolution grid

spacing (Dl5 2 km) is possible for 13-MHz radar sites

(STV, SEA, YHS, WLD, and WSH; see Table 2 for full

station and regional names of radar sites).

d. Evaluation

1) OVERVIEW

Although we evaluate the performance of reconstruction

in the idealized simulations with the ensemble-averaged

misfit and uncertainty (section 2d), in the realistic simula-

tions, we chose the standard deviation [j in Eq. (25)] of the

misfit to quantify the difference between the estimates and

true values and to present the results more effectively,

j(x)5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hu2

e(x, t)i
q

. (25)

As described above, the four parameters [d, Ds, Du,
and Dl in Eqs. (21) and (22); Table 1] are predetermined

in the realistic simulations. Thus, the performance of the

reconstruction is evaluated in terms of a search radius in

LSF (ba), data quality (z), and noise level (p) (Figs. 12

and 13; Table 1).

2) INFLUENCE OF SEARCH RADIUS, DATA

QUALITY, AND NOISE LEVEL

A longer search radius in LSF yields a higher standard

deviation of the misfit (Figs. 12a–f and 13a–f) because

the estimated vector current fields can be smooth and

may not resolve fine flow structures (e.g., submesoscale

and below). Similarly, the enhanced magnitudes of the

misfit tend to appear in the boundaries of the domain

and the areas near the baselines under the longer search

radius. However, the effective spatial coverage of the

estimated vector currents becomes larger under the

longer search radius (Figs. 12a–f and 13a–f).

As the amount of missing data in the radial velocity

maps increases, the standard deviation of the misfit in-

creases at the edge of the domain, in particular, and the

effective spatial coverage shrinks more significantly in

the LSF-mapped vector current fields than in the OI-

mapped ones (Figs. 12a–c and 12g–i). As the noise level

increases, the standard deviation of the misfit increases

slightly and the effective spatial coverage is nearly

identical (Fig. 13). The influence of the missing data on

the estimated vector currents is more dominant than

that of the observational error (Figs. 12 and 13).

3) SUMMARY

The standard deviation of the misfit of vector currents

estimated with the two inverse methods (LSF and OI)

and different search radii in LSF (ba 5 5 and 14km) is

summarized as follows:

j
OI

, j
LSF,5km

, j
LSF,14km

. (26)

For better observations of the surface currents using the

operational HFRs, we recommend using a decorrelation

length scale of less than 2 times the grid spacing of the vector

currents inOIandasearchradiusof less thanthegridspacingof

the vector currents in LSF to minimize the spatial smoothing.

Because the observational noise level is less influential in

the performance of the reconstruction of the surface cur-

rent fields than the density of the missing data, it can be a

priority to obtain the complete radial velocity maps. In

addition, the number of the radial velocities within the

given search radius is recommended as less than 10 in LSF

and 5–20 in OI (Fig. 2a), which can constrain the distance

between the radars under several combinations of the

available operating and sweeping frequencies. Above all,

the choice of the parameters should be based on the pri-

mary spatial scales of the surface currents of interest.

4. Discussion

a. Dependence of the distribution of the radial
velocities on the uncertainty

We examine how the uncertainties (or GDOPs) of the

LSF-mapped vector currents depends on cases in which

the radial velocities within a search radius involving

multiple radars are evenly and unevenly distributed,

assuming that the La total radial velocities within a

search radius are available from K individual radars and

each radar contributes between at least one and qk radial

velocities (qk $ 1; k5 1, 2, . . . , K; La 5�kqk). For ex-

ample, three radars contribute a maximum of 15 radial

velocities within a search radius, that is, five radial veloci-

ties from each radar (K5 3 and La 5 15). All radial ve-

locities have unique bearing angles with a resolution of 18,
and the bearing angles from a single radar have an interval

of 58 because they are assumed to be continuously sampled

in a polar coordinate grid. Figure 14a shows the total

number of the unique combinations of the radial velocities

(N5 27 791) as a function of the excluded number of the

radial velocities from the total number of the radial ve-

locities in a systematic way, which is calculated as follows:

N5 �
La23

l50

�
L

a

l

�
, (27)

and the number of the evenly (red) and unevenly (blue)

distributed cases ismarked only forLa 5 3, 6, 9, 12, and 15.

The PDFs of the estimated uncertainty (nuu and nyy) are

presented as a function of the total number of the
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participating radial velocities with a distinction of the

evenly distributed cases with black (La 5 3, 6, 9, 12,

and 15) and the unevenly distributed cases with colors

(Figs. 14b and 14c). Although the evenly distributed

cases may have less uncertainty, the uncertainty of the

LSF-mapped vector currents highly depends on the

number of the radial velocities instead of the degrees of

their distribution. Additionally, the uncertainties esti-

mated from the evenly and unevenly distributed cases

forLa 5 3, 6, 9, and 12 did not show thatmuch difference

in their PDFs (Figs. 14d and 14e). Thus, we conclude

that the degree of the distribution of the radial velocities

within the search radius does not affect theGDOPof the

estimated vector currents.

b. Scientific descriptions on ‘‘sufficient’’ information
to resolve an orthogonal vector current field

We have examined whether the nonorthogonally and

irregularly sampled scalar velocity data contain suffi-

cient information to reconstruct the true vector current

field. The HFR-derived radial velocity maps and

altimeter-derived along-track SSHs exhibit similarity in

terms of the nature of nonorthogonally and irregularly

sampled raw data to the vector current mapping. Con-

sidering both observations using the HFRs and altime-

ters on the same coastal area within 100km from the

coast, the surface current measurements using the

HFRs have relatively denser and more abundant spatial

samples than the altimeter-derived SSH observations

to resolve the orthogonal vector current maps hav-

ing designated resolutions (e.g., Wilkin et al. 2002;

Kuragano et al. 2015). Although the performance of the

reconstruction from the given nonorthogonally and ir-

regularly sampled scalar data may depend on 1) the data

quality associated with the missing data, 2) the obser-

vational noise level in the observed radial velocities, and

3) the chosen inverse methods (e.g., LSF or OI), the

standard deviation of the misfit between the estimates

and true values ranges from 2 to 10 cm s21 in the center

of the domain and increases at the edge of the domain

and areas close to the baselines, based on simulations

using the HFRs off the Oregon coast. Thus, the HFR-

derived radial velocity maps contain sufficient in-

formation to reconstruct the vector current field.

c. Propagations of the observational error of the
radial velocities

The observational error of the radial velocities, which

is quantified with long-term observations of the paired

radial velocities, is input into the OI mapping machine

as the mapping error (a regularization term of the con-

verting matrix) and comes out as the normalized un-

certainty of the vector currents, which contain the

directional uncertainty as part of systematic error.

However, because LSF assumes an infinite SNR, the

mapping error is assumed to be very small or zero when

it is formulated, and the GDOP is considered as the

uncertainty of the vector currents (e.g., Kim et al. 2008).

In the application of the vector currents, the uncertainty

of the vector currents can propagate through the final

outcomes. For example, in the forward and backward

time integrations of the consecutive vector current

maps, the uncertainty of the vector currents can be in-

corporated as a random variable (e.g., Ullman et al.

2006; Kim et al. 2009; Rogowski et al. 2015),

x(t
N
)5 x(t

0
)1 �

N

j51

u(x, t
j
)1 �

e
(x, t

j
)

h i
Dt, (28)

where x, t0, and Dt denote the horizontal position of the

Lagrangian trajectory, initial time, and time interval,

respectively.

d. Potential applications in coastal oceanography
using the proposed analysis

The proposed analysis is applicable to evaluate the

optimal installation locations of the radar to best ob-

serve the regional surface circulation. Because a radial

velocity is a cosine projection of the bearing angle of the

radar on the true current field, a mistakenly situated

radar may not report the dominant surface circulation

effectively. Thus, the regional numerical model outputs

can be used as a resource to evaluate the potential lo-

cations of the radar. The constellation of the radars

and associated GDOPs can be parameters to optimize

the cost function of an effective observing system using

HFRs on the regional surface circulation. These findings

can be used to develop relevant techniques, such as the

detection of eddies and fronts, configuration of HFR

installation locations to achieve appropriate spatial

coverage, and accuracy evaluations of the HFR obser-

vations. Additionally, the sensitivity resulting from the

errors of the directional solutions can be investigated by

applying an opposite sign of the radial velocities or by

misplacing the radial velocity data randomly, which can

simulate the radial solutions that are mistakenly calcu-

lated from the direction-finding algorithms. However,

coastal shadowing and regional noise resulting from the

environmental condition of the radar signals may rep-

resent additional factors that can alter the performance

of the surface current observations using the HFRs.

Note that the limitations of obtaining permission to use

the desired coastal real estate for scientific measurements

and of providing power and Internet communications to

a chosen site are additional constraints to consider.

When waterborne pollutants in marine accidents and
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larvae in marine protected areas are tracked as a part of

passive tracer dispersion studies, the proposed analysis

may report the uncertainty of their locations.

5. Conclusions

We evaluated how well an orthogonal two-dimensional

vector field can be reconstructed from a set of non-

orthogonally and irregularly sampled scalar velocity data as

an analogy of theHFR-derived surface radial velocitymaps

and their mapping to a vector current map. We generated

the radial velocity maps by sampling two-dimensional sur-

face vector currents, obtained from a simple spectral model

and a regional numerical simulation, on the polar or ellip-

tical coordinator grid points as configured in the operational

HFRs. Then, the radial velocitymapswere combined into a

vector current field using inversemethods: unweighted least

squares fitting and optimal interpolation. The true and es-

timated vector currents were evaluated with 1) the simula-

tion parameters built into the simple spectral model and 2)

the degrees of the quality and observational error of the

radial velocities associated with simulated missing data and

noise level, respectively. A greater number of missing data

andhigher observational errors correspond to an increase in

the standard deviation of the misfit and a significant re-

duction in the effective spatial coverage of the estimated

vector current fields. Although the reconstruction perfor-

mance depends on the chosen inverse methods and pa-

rameters, the nonorthogonally and irregularly sampled

radial velocities contain sufficient information to recon-

struct the given vector current field. This paper will provide

technical details for resolving a vector current field and

guidelines for the practical design of the spatial sampling of

the current field using the HFRs.
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APPENDIX A

Does a Single Radial Velocity Map Contain
Sufficient Information to Reconstruct an Orthogonal

Vector Current Field?

Extracting a vector current map from a single HFR-

derived radial velocity map has been investigated with

several studies using an assumption of nondivergent flows,

spatial averaging of radial velocity maps, and covariance

statistics of a single radar velocity data (e.g., Bjorkstedt and

Roughgarden 1997; Liu et al. 2007;G.Voulgaris et al. 2010,

10th International Radiowave Oceanography Workshop

(ROW-10)presentation;Hickey2010;Barrick2003;Voulgaris

et al. 2011). However, these approaches have been evalu-

ated in the present study, and none of them could retrieve

the true vector current field correctly. These heuristic les-

sons will be beneficial to the HFR users who may try to

apply similar approaches and assumptions.

a. True vector current fields

We use a simple model and a spectral model to gen-

erate the vector current maps and radial velocity maps

and to evaluate the approaches to extract the vector

current map from a single radial velocity map.

1) A SIMPLE MODEL

The vector current fields are simply simulated with the

spatially uniform currents and directional shear currents,

u(x, y)5
u
M
2u

m

L
y

y1 �
u
(x, y) and (A1)

y(x, y)5
y
M
2 y

m

L
x

x1 �
y
(x, y), (A2)

where Lx and Ly are the size of the domain in the x and y

directions, respectively, and uM and yM and um and ym are

the velocity components at the edge of the domain, which

can have the same values or maximum and minimum

depending on the degrees of shear and uniform flows.

The vector current fields with a single eddy, including

closed, inward, and outward spirals, are formulated with

u(x, y)5u
r
w cosu1u

u
w sinu1 �

u
(x, y) and (A3)

y(x, y)52u
u
w cosu1 u

r
w sinu1 �

y
(x, y), (A4)

where ur and uu are the velocity components in the ra-

dial and azimuthal directions, respectively;

w5
a

p

r

2s2
exp

�
2

r2

2s2

�
, (A5)

r5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2 x

0
)2 1 (y2 y

0
)2

q
, (A6)
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�
u
5 ghu2i1/2N(0, 1), and (A7)

�
y
5 ghy2i1/2N(0, 1), (A8)

where s denotes the scale of eddies; x0 and y0 de-

note the center of the eddy; and a indicates the

amplitude of the eddy (clockwise if a, 0 and coun-

terclockwise if a. 0). For all cases of the uniform,

shear, and vortical flow fields [Eqs. (A1)–(A4)],

an observational noise can be simulated with a Gaussian

random variable, which can be assumed as the ratio

g of noise variance to signal variance. The angle

brackets in Eqs. (A7) and (A8) denote the spatial

mean.

2) A SPECTRAL MODEL

The vector current fields are defined as

u(x, y, t)5 �
M*

m52M*
�
N*

n52N*
�
S*

s52S*
Â

mns
cosq

mns
1 B̂

mns
sinq

mns
and (A9)

y(x, y, t)5 �
M*

m52M*
�
N*

n52N*
�
S*

s52S*
Ĉ

mns
cosq

mns
1 D̂

mns
sinq

mns
, (A10)

where

q
mns

5 k
m
x1 l

n
y2 2ps

s
t5 2p

 
m

L
x

x1
n

L
y

y

!
2 2ps

s
t , (A11)

km and ln denote the wavenumber, Lx and Ly are

the length of the domain in the x and y directions,

respectively, and ss indicates the frequency (cpd). As

the spatial covariance in the physical space is equiva-

lent to the power spectrum in the wavenumber domain

(e.g., Cohen 1992; Brigham 1988), the coefficients

(Âmn, B̂mn, Ĉmn, and D̂mn) are assumed to be random

variables of normal distribution with zero mean and

unit standard deviation [N(0, 1)], for instance,

Â
mns

5 (j
mn
)1/2(j

s
)1/2 N(0, 1), (A12)

with the power spectrum of the vector current fields in the

wavenumber [jmn 5 j(km, ln)] and frequency [js 5 j(ss)]

FIG. A1. (a) A spatially averaged frequency-domain energy spectrum [S(ss)] of hourly radial velocities at MAN1 (Table 2 and

Figs. 11a–d) at 225 grid points more than 80% temporal data availability over a period of two years (2007–08). Barotropic tides (K1, M2,

and S2), inertial frequency (fc), spring–neap (SN; 14.765 days), and lunar fortnightly (LF; 13.661 days) tides, along with the seasonal cycle

and its five harmonics (SA1, SA2, . . . , SA6) aremarked.An approximated energy spectrum [j(ss), red curve] of the hourly radial velocities

in the frequency domain is overlaid. (b) Wavenumber energy spectra [S(k), gray curves] of the hourly radial velocities in the range

direction at individual azimuthal angles, and their reference decay slopes of k21 and k22 (blue and red lines, respectively).
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FIG. A2. (a),(b) An example of the true (or model) vector current field based on a spectral model and its

radial velocity map sampled from a single radar located at the center of the domain. (c) An example of the

estimated vector current field using an assumption of the horizontally nondivergent flow. Clockwise (blue)

and counterclockwise (red) streamfunctions (cm2 s21). (d)A comparison between theOI-mapped (cyan) and

true (black) vector current fields. (e) An example of the true (or model) vector currents (black arrows) and

corresponding radial velocities [yellow arrows or red (positive) and blue (negative); cm s–1]. (f) An example

of the true (black) and estimated vector currents (blue) based on the sample covariance matrix [a close-up

view of the green box in (e)].
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domains. The wavenumber spectrum is approximated with a

two-dimensionalGaussianorexponential function, respectively:

j(k
m
, l

n
)5 4pl

x
l
y
exp(2k2

ml
2
x 2 l2nl

2
y) or (A13)

j(k
m
, l

n
)5

2pl
x
l
y

(11 k2
ml

2
x 1 l2nl

2
y)

3/2
, (A14)

and lx and ly denote the decorrelation length scales in

the x and y directions, respectively.

Conversely, the spectrum in the frequency domain of the

vector current time series is approximated with the back-

ground energy and variances at the peak frequencies,

j(s
s
)5As2a

s 1 �
L

l51

B
l
exp

"
2
js

s
2 n

l
j

(l
t
)
l

#
, (A15)

where A and Bl are the amplitudes of the spectra in the

frequency domain, a is the slope of the background en-

ergy, and nl and (lt)l denote the frequencies with peaks

and their bandwidths, respectively (l 5 1, 2, . . . , L).

The bandwidth is determined by the width to have b deci-

bels reduced from the peak, where b is equal to 1, 5, or 10

depending on the decay pattern of the local peak.

In this work the energy spectra of the radial velocities

in the wavenumber and frequency domains are ap-

proximated with Eqs. (A14) and (A15), respectively.

The one-dimensional wavenumber spectra estimated in

the range direction (the outward direction from the center

of the radar is the positive range axis) have a slope of k22;

thus, the exponential wavenumber spectrum is applied

(Fig. A1a). The spatially averaged energy spectrum of the

radial velocity time series in the frequency domain con-

tains two peaks at the inertial frequency (’1.42 cpd) and

K1 frequency (1.0027 cpd) along with the background

energy of the red spectrum (Fig. A1b). The coefficients

in Eq. (A15) are estimated as A5 54:8, a5 1:1062,

B1 5 630.95, and lt 5 0.01 at the inertial frequency, and

B2 5 316.22 and lt 5 0.08 at the K1 frequency.

b. Extracting vector currents

1) HORIZONTALLY NONDIVERGENT FLOWS

The vector current fields are assumed to be the horizon-

tally nondivergent flow to satisfy the geostrophic balance

(e.g., Liu et al. 2007; Bjorkstedt and Roughgarden 1997),

›u

›x
1

›y

›y
5 0: (A16)

The streamfunction c is decomposed with normal

modes in the x and y directions,

c5 �
M

m52M
�
N

n52N

A
mn

cosn
mn

1B
mn

sinn
mn

, (A17)

FIG. B1. (a),(b) Estimated vector current components (u and y; m s21) along a cross-shore line (green lines in

Figs. 1a and 1b) using LSF and OI under the same parameters in Fig. 1 but with the search radius of 1.5 km in LSF

(ba 5 1:5 km). (c),(d) GDOPs [n for LSF; Eq. (5)] (see Table 1 for the simulation parameters).
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FIG. B2. Ensemble-averaged GDOPs (hnuui) of the LSF-mapped u component estimated from the radial

velocity maps (Fig. 1b) are evaluated with the (a) separation distance (d5 8, 12, 16, 20, 24, 28, and 32 km),

(b) range spacing (Ds5 0.5, 0.75, 1, 1.25, 1.5, 1.75, and 2 km), (c) azimuthal spacing (Du5 28, 38, 48, 58, 68, 78,
and 88), (d) spacing of the rectangular grid (Dl5 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4 km), (e) data quality (z5 0,

0.1, 0.2, 0.3, 0.4, 0.5, and 0.6), and (f) noise level ( p5 0, 0.05, 0.1, 0.15, 0.2, and 0.25) under the search radius

of 1.5 km (ba 5 1:5 km). Simulations are conducted with combinations of a single parameter with discretely

changing values and the rest of the parameters with a fixed value for the control simulations (see Table 1 for

the simulation parameters).

APRIL 2018 SOH ET AL . 789



FIG. B3. Ensemble-averaged misfits (huei3 10; m s21) of the LSF-mapped u component estimated from the

radial velocity maps (Fig. 1b) are evaluated with the (a) separation distance (d5 8, 12, 16, 20, 24, 28, and

32 km), (b) range spacing (Ds5 0.5, 0.75, 1, 1.25, 1.5, 1.75, and 2 km), (c) azimuthal spacing (Du5 28, 38, 48, 58,
68, 78, and 88), (d) spacing of the rectangular grid (Dl5 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4 km), (e) data quality (z5 0,

0.1, 0.2, 0.3, 0.4, 0.5, and 0.6), and (f) noise level (p5 0, 0.05, 0.1, 0.15, 0.2, and 0.25) under the search radius of

1.5 km (ba 5 1:5 km). Simulations are conducted with combinations of a single parameter with discretely

changing values and the rest of the parameters with a fixed value for the control simulations (see Table 1 for

the simulation parameters).
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and the corresponding current components (u and

y) are

u52
›c

›y
(A18)

5 �
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where nmn 5 kmx1 lny.

The radial velocity at a given azimuthal and range bin [Eq.

(2)] is expressedwith the normalmodes and their coefficients,

r5 sinn
mn
(l
n
cosu2 k

m
sinu)A

mn
1 cosn

mn
(2l

n
cosu1 k

m
sinu)B

mn
. (A22)

FIG. C1. (a),(b) A schematic diagram of the averaging time window in the operational SeaSonde short- and long-

range compact array systems. A single cross-spectra (CS) file, reported every 10 min in the short-range system (every

30 min in the long-range system), is generated from observations within a 15-min-long (60-min-long) time window (red

boxes). A single radial velocity (RS) solution, reported every 60 min for both systems, is generated by the cross-spectra

files within a 75-min-long (180-min-long) time window (thick blue horizontal lines). Based on the effective time window

(green boxes) for the hourly radial velocity data, the data outside of green boxes are overlapped with the data within an

adjacent effective time window, i.e., a period of 15 min over 75 min (120 min over 180 min) is overlapped. Note that the

time windows are slightly shifted to avoid their overlapping in (b). (c),(d) Power spectra of a pure M2 time series

(black) with a white noise (e.g., 10% of signal variance) for a period of 2 months and the boxcar-averaged time series as

the cross-spectra (blue) data and radial velocity (red) are sampled.
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The inverse method is applied to estimate Amn and

Bmn (e.g., Wunsch 1996). The vector currents estimated

under the assumption of nondivergent flow are not

consistent with the true currents (Fig. A2). Although

this approach is evaluated by changing the number of

modes [Eq. (A17)] and the SNR in the inverse method,

the estimated vector current fields are quite different

from the true vector current fields.

2) OBJECTIVE MAPPING USING DATA

COVARIANCE MATRICES

The data covariance of the radial velocities is used as a

constraint to estimate the vector current maps (e.g., Kim

et al. 2007). The objective mapping using data co-

variance is conducted as follows:

û5 covydmcov
21
dd r , (A23)

where covdm is the covariance between model radial

velocities [Eq. (A22)] and model vector currents

(u5 [u y]y),

cov
dm

5 hruyi , (A24)

covdd is the covariance between model vector currents,

cov
dd
5 hrryi1 heeyi , (A25)

and heeyi is the noise covariance of the radial velocities.

Note that the lowercase bold letters indicate the vector

quantity.

FIG. D1. (a) A schematic diagram to show search radii (bE
b when r0 5 0:1 and bG

b when r0 5 0:2) inOI under a given decorrelation length

scale (lE and lG when r0 5 e21) and a lower bound of the correlation (r0 5 0:1 or r0 5 0:2) for one-dimensional exponential (rE) and

Gaussian (rG) correlation functions. A search radius (bb) is determined by the decorrelation length scale and the lower bound of the

correlation: (b) an exponential correlation function and (c) a Gaussian correlation function.
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The sample covariance matrices were computed over

5000 realizations, which contain most of the variability

in the observed vector current fields. The vector current

maps estimated from the objective mapping of the

sample covariance matrices do not agree well with the

true vector current maps (Figs. A2e and A2f) because

covdm and covdd do not contain sufficient information of

the true vector current fields [Eq. (2)].

APPENDIX B

LSF-Mapped Vector Current Components under a
Reduced Search Radius

In a similarwaypresented inFigs. 1c–f, 3–6, the estimated

vector current components and the corresponding un-

certainty, and their ensemble average of the estimated u

component using LSF under a reduced search radius

(ba 5 1:5 km) are evaluated to avoid oversampling the data

field and minimizing spatial smoothing (Figs. B1–B3).

The current components estimated under a shorter

search radius are more similar to the true values and

their uncertainty is relatively higher than the esti-

mated data under a longer search radius (ba 5 4 km;

Figs. 1c–f and B1).

The ensemble-averaged uncertainty has aminimum in

the middle of the domain and significantly increases as

it gets near the baseline or onshore (Fig. B2). The

ensemble-averaged misfit fluctuates dominantly re-

gardless of gridding locations and values of the chosen

parameters (Fig. B3) except for the cases to simulate

variation of the missing data and observational noise

(Figs. B3e and B3f). The uncertainty is nearly con-

stant regardless of the noise level (Fig. B2f).

APPENDIX C

Temporal Averaging of Radial Velocities

In a compact array system, a single radial velocity map

is a set of radial solutions that are averaged over a time

window between 1 and 3h, depending on the length of

the finite Fourier transform (FFT) in the internal cal-

culation of the cross-spectra. For instance, a short-range

system tends to yield hourly averaged radial velocity

maps and a long-range system produces three-hourly

averaged radial velocity maps. Conversely, a phased-

array system generates radial velocity maps with a

higher temporal resolution than 1h, depending on the

internal configuration. Thus, extracting a vector current

map from radial velocity maps obtained from multifre-

quency radar systems should be addressed carefully

because more than two different types of temporal av-

eraging are involved. In particular, it will be useful to

investigate whether tidal amplitudes and phases of the

vector currents contain biases and errors resulting from

temporal averaging.

In this work the radial velocity maps obtained from a

compact array system (e.g., SeaSonde CODAR) are dis-

cussed. There are multiple boxcar averages using a time

window in the individual steps of data processing, and the

center of the averaging timewindow is the time stamp in the

operational system (Fig. C1). These multiple boxcar aver-

agesmay cause the spread of pure signals (e.g., tides), which

can appear as a time series having a reduced SNR (or in-

creased noise level) or artificial nonlinear interactions

(e.g., baroclinic tidal currents and near-inertial currents)

(e.g., Brigham 1988). In a short-range radar system, for

instance, a 10-min cross-spectra file is processed from the

rawdata (e.g., CSQ)within a 15-min-long timewindow, and

an hourly radial solution is computed from an average of

the cross-spectra files over a 60-min-long time window, that

is, raw data within a 75-min-long time window (Fig. C1a).

Similarly, an hourly radial solution in the long-range radar

system is estimated from an average within a 60-min-long

time window of the cross-spectra (equivalent to 180-min-

long raw data), and each 30-min cross-spectra file is com-

puted from the raw spectral data within a 60-min-long time

window (Fig. C1b).

A sinusoidal time series with a pure M2 tidal peak and

white noise (e.g., 10% of the signal variance) for a period

of 2 months is sampled and averaged as described above,

and its energy spectra are compared. Although the noise

level increases because of themultiple boxcar averages of

the time series—that is, multiple time convolutions of a

sinc function in the frequency domain—the location of

the peak and the bandwidth obtained from temporal av-

eraging simulations remains the same for both short- and

long-range systems (Figs. C1c and C1d).

APPENDIX D

A Search Radius in OI

A search radius bb in OI is proposed to minimize

computational loads in thematrix inversionbecause the size

of the covariance matrix depends on the number of par-

ticipating radial velocities. The length scales at the lower

bound of correlations (r5 r0) can be found as bE
b and bG

b

for a one-dimensional exponential and Gaussian correla-

tion functions, respectively (Fig. D1a). Similarly, the

search radius can be found under a given lower bound of

the correlation and the decorrelation length scale of the

correlation function (Figs. D1b and D1c).
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