Resonant ocean current responses driven by coastal winds near the critical latitude

Sung Yong Kim1 and Greg Crawford2

1Department of Mechanical Engineering
School of Mechanical and Aerospace Engineering,
Korea Advanced Institute of Science and Technology (KAIST)
Republic of Korea
syongkim@kaist.ac.kr

2The Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario, Canada

Resonant **ocean current responses** driven by **coastal winds** near the critical latitude

- Wind and current responses
 - Ekman theory
Resonant ocean current responses driven by coastal winds near the critical latitude

- Wind and current responses
 - Ekman theory
- Resonance
 - Forcing-response in the frequency domain
 - Natural frequency – Coriolis frequency

\[f_c = 2 \sin \text{(latitude)} \text{ [cycles per day]} \]
Resonant ocean current responses driven by coastal winds near the critical latitude

- Wind and current responses
 - Ekman theory
- Resonance
 - Forcing-response in the frequency domain
 - Natural frequency – Coriolis frequency
- Critical latitude
 - Observations at different latitudes – wind and surface currents off the USWC

Shaffer, 1972; Ekman model
Resonant ocean current responses driven by coastal winds near the critical latitude

• At a given latitude, what would be the wind-current response in the frequency domain?
• At a given frequency, what would be the wind-current response as a function of latitude?
Wind-current responses in the freq. domain

\[\frac{\partial \mathbf{u}}{\partial t} + if_c \mathbf{u} + r \mathbf{u} = \frac{1}{\rho} \frac{\partial \tau}{\partial z} \]

Ekman theory
Wind-current responses in the freq. domain

\[
\frac{\partial \mathbf{u}}{\partial t} + \mathbf{i} f_c \mathbf{u} + r \mathbf{u} = -\frac{1}{\rho} \frac{\partial \tau}{\partial z}
\]

\[
H_E(z, \sigma) = \frac{\hat{u}(z, \sigma)}{\hat{\tau}(\sigma)} = \frac{e^{i z}}{\lambda \rho v}
\]

\[
\lambda = \sqrt{[i(\sigma + f_c) + r]/v}
\]

At a given latitude, the relationship between wind stress and surface currents is given as a transfer function in the frequency domain.
Wind-current responses in latitude

\[\frac{\partial \mathbf{u}}{\partial t} + if_c \mathbf{u} + r \mathbf{u} = \frac{1}{\rho} \frac{\partial \tau}{\partial z} \]

Ekman theory

\[H_E(z,f_c) = \frac{\hat{u}(z,f_c)}{\hat{\tau}(f_c)} = \frac{e^{i\lambda z}}{\lambda \rho v} \]

as a function of Coriolis freq. (latitude)

\[\lambda = \sqrt{[i(\sigma + f_c) + r]/v} \]
Wind-current responses in latitude

\[
\frac{\partial \mathbf{u}}{\partial t} + if_c \mathbf{u} + r \mathbf{u} = \frac{1}{\rho} \frac{\partial \tau}{\partial z}
\]

Ekman theory

\[
H_{E}(z, f_c) = \frac{\hat{u}(z, f_c)}{\hat{\tau}(f_c)} = \frac{e^{iz}}{\lambda \rho v}
\]

as a function of Coriolis freq. (latitude)

\[
\lambda = \sqrt{[i(\sigma + f_c) + r]/v}
\]

\[r = 0;\]
\[\sigma = 1 \text{ cpd}\]
(diurnal frequency).

Simpson et al, JPO 2002 (Slab layer model)

Resonant latitude due to land/sea breeze: ±30°N
Latitudinal coastal observations

- US West Coast high-frequency radar network-derived surface currents and wind stress (red dots) at NDBC buoys.
- Latitudinal variation of 32°N to 47°N

\[
\hat{u}(z, \omega) = H(z, \omega) \hat{\tau}(\omega)
\]

\[
H(z, \omega) = \left(\langle \hat{u}(z, \omega) \hat{\tau}^\dagger(\omega) \rangle \right) \left(\langle \hat{\tau}(\omega) \hat{\tau}^\dagger(\omega) \rangle + R_a \right)^{-1}
\]

\(R_a\) : Regularization matrix
Variability of surface currents and wind

- Wind- and tide-coherent, low-frequency variance, and inertial variance

Kim et al (JGR, 2011)
Variability of surface currents and wind

- Wind- and tide-coherent, low-frequency variance, and inertial variance
- Variance of the diurnal wind does not vary that much in the along-shore direction, but it is given as a function of distance from the shoreline (cross-shore direction).

Kim et al (JGR, 2011)
Coast-wide wind transfer functions

\[\hat{u}(\tau, \omega) = H(\tau, \omega) \hat{\tau}(\omega) \]

(Kim and Crawford, GRL 2014)
Coast-wide wind transfer functions

At a given latitude, what would be the wind-current response in the frequency domain?

At a given frequency, what would be the wind-current response as a function of latitude?

(Kim and Crawford, GRL 2014)
Coast-wide wind transfer functions

(Kim and Crawford, GRL 2014)
Coast-wide wind transfer functions

(Kim and Crawford, GRL 2014)
Resonant responses near the critical latitude

(a)

- Slab layer model
- $Z = 0$ (Ekman)
- $Z = 0.35\delta_E$ (Near-surface avg. Ekman)

Resonant latitude due to land/sea breeze: ±30°N
Summary

- Wind-current responses are examined in the frequency domain and latitude using analytic solutions of Ekman model (and slab layer and surface-averaged Ekman models) and observations off the US West Coast.
- The current responses are enhanced at the local inertial frequency.
- Resonant responses can be expected at the +/-30° latitude in the diurnal land-sea breeze environment.
- Energetic mixing and potential internal motions near the critical latitude are expected.
BACKUP SLIDES
Wind variability

- Variance of the diurnal wind does not vary that much in the along-shore direction, but it is given as a function of distance from the shoreline (cross-shore direction).
Resonant responses at the critical latitude

\[\frac{\partial \mathbf{u}}{\partial t} + i f_c \mathbf{u} + r \mathbf{u} = \frac{1}{\rho} \frac{\partial \tau}{\partial z} \]

\[H_E(z, \sigma) = \frac{\hat{u}(z, \sigma)}{\hat{\tau}(\sigma)} = \frac{e^{iz}}{\lambda \rho \nu} \]

\[\lambda = \sqrt{i(\sigma + f_c) + r} / \nu \]

\[\frac{\partial \mathbf{u}}{\partial t} + i f_c \mathbf{u} + r \mathbf{u} = \frac{\tau^w}{\rho h} \]

\[H_S(\sigma) = \frac{\hat{u}(\sigma)}{\hat{\tau}(\sigma)} = \frac{1}{\rho h [i(\sigma + f_c) + r]} \]

\(f_c = 2 \sin \text{ (latitude), } r = 0 \);

at \(\sigma = 1 \) cpd (diurnal frequency).

Shaffer, 1972; Ekman model

Simpson et al, JPO 2002 (Slab layer model)

Resonant latitude due to land/sea breeze: ±30°N
Resonant responses at the critical latitude

\[\frac{\partial \mathbf{u}}{\partial t} + if_c \mathbf{u} + r \mathbf{u} = \frac{1}{\rho} \frac{\partial \tau}{\partial z} \]

\[H_E(z, \sigma) = \frac{\hat{u}(z, \sigma)}{\hat{\tau}(\sigma)} = \frac{e^{jz}}{\lambda \rho v} \]

\[\lambda = \sqrt{[i(\sigma + f_c) + r]/v} \]

\[H_A(\sigma) = \frac{1}{Z^*} \int_0^{Z^*} H_E(z, \sigma) \, dz, \]

\[= \frac{1}{Z^*} \frac{1}{\lambda^2 \rho v} \left(e^{\lambda Z^*} - 1 \right), \]

\(f_c = 2 \sin (\text{latitude}) \)

When \(\sigma = 1 \) cpd.

Near-surface averaged Ekman model can be appropriate to explain the HFR-derived surface currents.

Shaffer, 1972; Ekman model

Resonant latitude due to land/sea breeze: \(\pm 30^\circ \text{N} \)