Energy spectra of submesoscale coastal ocean currents

Sung Yong Kim

Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea

syongkim@kaist.ac.kr

(Kim and Crawford, GRL 2015)

+ energy fluxes Energy spectra of submesoscale coastal ocean currents

- 3-30 MHz frequency (HFR)
- Using Doppler shift of backscattered signals of surface gravity waves to estimate the background currents
- Upper 1 m depth-averaged currents
- Hourly and O(1) km scale surface current maps
- A network of HFRs along the coast over 2500 km of US West Coast provides km resolution and hourly surface current maps which cover about 150 km offshore from shoreline.

(Kim and Crawford, GRL 2015)

+ energy fluxes Energy spectra of submesoscale coastal ocean currents

- O(1) Rossby number
 [Ro = U/(fL) = ζ/f]
- A horizontal scale smaller than the first baroclinic Rossby deformation radius; O(1-10) km
- Frequently observed as fronts, eddies, and filaments
- Contribute to the vertical transport of oceanic tracers, mass, and buoyancy and rectify the mixed-layer structure and upper-ocean stratification

Motivation

Sampling domain in computation of energy spectra

- HFR surface currents (1, 6, and 20 km resolution; hourly) off southern California and on coastline axis (USWC)
- Gridded ALT products [CCAR (daily) and AVISO (weekly)] and along-track altimeter (ALT; Envisat/Jason-1; weekly) on NE Pacific
- CalCOFI shipboard ADCP (Line 90; quarterly)
- SoCAL was chosen because it contains relatively minimum ageostrophic components.

Energy spectra in the wavenumber domain (1D)

Robust estimate on k-2 spectra with data in other regions.

Two kinds of ALT data: Envisat and Jason-1 HFR data with three resolutions: 1 km and 6 km data are sampled from SoCAL, because minimum ageostropic components are expected. 20 km data are from the coastline axis.

Energy spectra in the wavenumber domain (1D; +Spray)

K⁻² power law related to submesoscale.

Latitude (N)

Robust estimate on k-2 spectra with data in other regions.

Two kinds of ALT data: Envisat and Jason-1 HFR data with three resolutions: 1 km and 6 km data are sampled from SoCAL, because minimum ageostropic components are expected.

20 km data are from the coastline axis.

Energy spectra in the frequency domain

Along-track altimeter data are binned in $2^{\circ} \times 2^{\circ}$ grid boxes and averaged in time (7-daily \rightarrow 30 daily time series) to increase signal to noise ratio.

Conversion between covariance and power spectra

$$E_{\bullet}(k_{x},k_{y}) = \mathcal{F}(d)^{\dagger} \mathcal{F}(d),$$

$$= \frac{1}{\Delta k_{x}} \frac{1}{\Delta k_{y}} \left| \frac{1}{NM} \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} d(x_{n},y_{m}) e^{-ik_{x}x_{n}-ik_{y}y_{m}} \right|^{2}$$

$$E_{\bullet}(\alpha_{x},\alpha_{y}) = |\mathcal{F}(c)|,$$

$$1 = \frac{1}{\Delta k_{x}} \frac{1}{\Delta k_{y}} \left| \frac{1}{N} \sum_{n=0}^{N+1} \frac{M^{+}}{2} \right|$$

Wiener-Khinchin theorem

$$= \frac{1}{\Delta \alpha_x} \frac{1}{\Delta \alpha_y} \left| \frac{1}{N^* M^*} \sum_{n=N^-}^{\infty} \sum_{m=M^-}^{\infty} c(n\Delta x, m\Delta y) e^{-i\alpha_x n\Delta x - i\alpha_y m\Delta y} \right|^{-i\alpha_x n\Delta x - i\alpha_y m\Delta y}$$

where

$$c(n\Delta x, m\Delta y) = \langle d(x, y, t)d(x + n\Delta x, y + m\Delta y, t)^{\ddagger} \rangle,$$

= $\frac{1}{L}d(x, y, t)d(x + n\Delta x, y + m\Delta y, t)^{\ddagger},$

and k_x and α_x , respectively, and k_y and α_y are wave-numbers in the *x* and *y* directions. ⁺ and [‡] denote the complex conjugate and matrix transpose, respectively. *L* is the number of time records, *N* and *M* are the number of space in *x* and *y* directions ($N^* = 2N - 1$ and $M^* = 2M - 1$; X^+ and $X^$ indicate -X + 1 and X - 1).

Examples:

 $c(x) = e^{-\frac{x^2}{\lambda^2}},$ $E(k) = \sqrt{\pi}\lambda e^{-\frac{1}{4}k^2\lambda^2}.$

Gaussian covariance \leftrightarrow Gaussian wavenumber spectra

$$c(x) = e^{-\frac{|x|}{\lambda}},$$
$$E(k) = \frac{2\lambda}{1 + k^2 \lambda^2}$$

Exponential covariance \leftrightarrow (approximate) k-2 wavenumber spectra

Spatial covariance and decorrelation length scales

Scale-by-scale energy budget equation

$$\frac{\partial}{\partial t}E(k^*) + \Pi(k^*) = -2\nu\Omega(k^*) + F(k^*), \quad \text{(Frisch 1995)}$$

where

$$\begin{split} E(k^*) &= \frac{1}{2} \sum_{|\mathbf{k}| < k^*} |\hat{\mathbf{u}}(\mathbf{k})|^2, \quad \text{Cumulative kinetic energy} \\ \Pi(k^*) &= \langle \mathbf{u}_{<} \cdot (\mathbf{u} \cdot \nabla \mathbf{u}) \rangle, \quad \text{Cumulative advective kinetic energy flux} \\ &= \langle \mathbf{u}_{<} \cdot (\mathbf{u}_{<} \cdot \nabla \mathbf{u}_{>}) \rangle + \langle \mathbf{u}_{<} \cdot (\mathbf{u}_{>} \cdot \nabla \mathbf{u}_{>}) \rangle, \\ \Omega(k^*) &= \frac{1}{2} \sum_{|\mathbf{k}| < k^*} \mathbf{k}^2 |\hat{\mathbf{u}}(\mathbf{k})|^2, \text{ Cumulative enstrophy} \\ \mathbf{u}(\mathbf{x}) &= \mathbf{u}_{<}(\mathbf{x}) + \mathbf{u}_{>}(\mathbf{x}), \\ &= \sum_{|\mathbf{k}| < k^*} \hat{\mathbf{u}}(\mathbf{k}) e^{i\mathbf{k}\mathbf{x}} + \sum_{|\mathbf{k}| > k^*} \hat{\mathbf{u}}(\mathbf{k}) e^{i\mathbf{k}\mathbf{x}}, \end{split}$$

 Surface currents from HFR observations (1 km) and sub-mesoscale model (0.75 km; X. Capet *et al*, 2009) off southern California

Comparison of advective kinetic energy flux $[\Pi(k^*)]$

- Energy spectra at mesoscale and sub-mesoscale are examined with altimeter-, high-frequency radar-, shipboard ADCP-derived (coastal) currents.
- The operational HFR network provides the detailed aspects of coastal surface circulation and ocean dynamics at a resolution (km in space and hourly in time) containing responses to the low frequency, tides, wind forcing, and Earth rotation.
- The spatial covariance appears as an anisotropic exponential shape with decorrelation length scales of 20 km nearshore and 100 km offshore parallel to the shoreline, consistent with approximate k-2 and k-3 decay behavior.
- Energy fluxes computed from sub-mesoscale [O(1) km] HFR observations and numerical model results show consistent forward cascades at O(1-10) km scale.

Thank you! syongkim@kaist.ac.kr