Poleward propagating features as observed in the California network of HF radar

Sung Yong Kim¹, Eric Terrill¹, Bruce Cornuelle¹, Burt Jones², Libe Washburn³, Mark Moline⁴, Jeffrey Paduan⁵, Toby Garfield⁶, and John Largier⁷

¹Scripps Institution of Oceanography,²University of Southern California,
 ³University of California, Santa Barbara, ⁴California Polytechnic State University,
 ⁵Naval Postgraduate School, ⁶San Francisco State University,
 ⁷University of California, Davis

Outline

- Observation domain and bathymetry
- Preliminary results
 - Poleward propagating features in surface currents
 - NDBC wind data (mean and variance)
 - Wind impulse response function estimate
- Summary

Scales of variability

Dickey, Rev. Geophys. 2006

HF network in California

- Observations
 - Surface currents (47 HF radars in SCCOOS & CeNCOOS).
 - Tides (NOAA), Wind (NDBC)
- Coastline axis
 - Within 15-25km.
 - Passing SBC.
 - Evenly spaced axis.
- OI-UV map
 - 25 hrs avg. (subinertial)
 - Alongshore currents (v*)
 projected parallel to
 coastline axis.

Bathymetry along the CA coast

Coastal trapped waves (CTWs)

- A hybrid of barotropic Rossby (shelf) waves (no stratification, sloping bottom, S→0) and baroclinic Kelvin waves (stratification, flat bottom, S→∞).
- Propagation along the coastline (continental shelves and slopes) on the right in the N.H. (left in the S.H.)
- Sub-inertial time scale (days~weeks)

Burger number

$$S = \left(\frac{N_0 H}{fL}\right)^2$$

Power spectra

(Brink, ARFM 1991)

Power spectra

NDBC wind (1995-2007)

SF PR

MB

PO WB

NP

CC

within sea/breeze cell.

Wind-driven current estimate

- Wind impulse response function (WIRF) estimate using hourly NDBC buoy winds and hourly de-tided surface currents for 10 months.
- Time/frequency domain isotropic WIRF.
- 6 days time lag wind stress as the impulse.

$$\mathbf{u}(z,t) = \int_{t'} \mathbf{G}(z,t-t')\boldsymbol{\tau}(t') \,\mathrm{d}t',$$
$$\mathbf{G}(z,t) = \left(\langle \mathbf{u}(z,t) \,\boldsymbol{\tau}_N^{\dagger}(t) \rangle \right) \left(\langle \boldsymbol{\tau}_N(t) \,\boldsymbol{\tau}_N^{\dagger}(t) \rangle + \mathbf{R}_{\mathbf{b}} \right)^{-1}$$

 $\langle oldsymbol{ au}_N(t)
angle$: N hour advanced time lag wind stress

Wind-impulse response function

Wind-impulse response function

Wind-driven surface currents

Unconditioned vs. wind-free surface currents

Most of winddriven

30

-10

-20

-30

30

20

10

0

-10

-20

-30

- currents are
- downcoast,
- so upcoast
 - currents are
 - discovered
- and the
- noises are
- added

Summary

- Poleward propagating features in surface currents along the CA coast show O(10-100) km/day speed with the period of 10-30 days.
- Wind-driven currents were filtered out to magnify the poleward propagating features.
- Need to revisit the vector current estimate with multiple frequency radars (long and short range radar) and refine the estimate.