Resonant ocean current responses driven by coastal winds near the critical latitude

Sung Yong Kim¹ and Greg Crawford²

¹Division of Ocean Systems Engineering
School of Mechanical, Aerospace & Systems Engineering,
Korea Advanced Institute of Science and Technology (KAIST)
Republic of Korea
syongkim@kaist.ac.kr

²The Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario, Canada

Resonant ocean current responses driven by coastal winds near the critical latitude

- Wind and current responses
 - Ekman theory.
Resonant ocean current responses driven by coastal winds near the critical latitude

- Wind and current responses
 - Ekman theory.
- Resonance
 - Forcing-response in the frequency domain
 - Natural frequency – Coriolis frequency

\[f_c = 2 \sin (\text{latitude}) \text{ [cycles per day]} \]
A moving object in a rotating frame

- Coriolis force deflects the path of a moving object in a rotating frame.
 - $f_c = 2 \sin (\text{latitude}); \text{ [cycles per day]}$
 - A unique period as a function of latitude
 - A natural resonant frequency in the dynamic system

- At $30^\circ N$, $f_c = 1 \text{ cpd}$ is equal to the diurnal frequency.
NI variance distribution

Elipot and Lumpkin (GRL 2008)
Resonant ocean current responses driven by coastal winds near the critical latitude

- Wind and current responses
 - Ekman theory
- Resonance
 - Forcing-response in the frequency domain
 - Natural frequency – Coriolis frequency
- Critical latitude
 - Observations at different latitudes – wind and surface currents off the USWC

Shaffer, 1972; Ekman model
Resonant ocean current responses driven by coastal winds near the critical latitude

• At a given latitude, what would be the wind-current response in the frequency domain?
• At a given frequency, what would be the wind-current response as a function of latitude?
How can we identify a system?
How can we identify a system?

system

/ˈsɪstəm/

noun

1. a set of connected things or parts forming a complex whole, in particular.

2. a set of principles or procedures according to which something is done; an organized scheme or method.
 "a multiparty system of government"

synonyms: method, methodology, technique, process, procedure, approach, practice; More
How can we identify a system?

system

/sistəm/

noun

1. a set of connected things or parts forming a complex whole, in particular.

2. a set of principles or procedures according to which something is done; an organized scheme or method.

"a multiparty system of government"

synonyms: method, methodology, technique, process, procedure, approach, practice; More
How can we identify a system?

- Governing equations

\[F = ma = m \left(\frac{\Delta v}{\Delta t} \right) \]
How can we identify a system?

- Governing equations

\[F = ma = m\left(\frac{\Delta v}{\Delta t}\right) \]

\[\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \nabla \vec{v} = -\frac{1}{\rho_0} \nabla p + \nu \nabla^2 \vec{v} + \frac{\rho}{\rho_0} \vec{g} - 2(\vec{\Omega} \times \vec{v}) \]

The movement of fluid depends upon: pressure, viscosity, gravity, rotation.
How can we identify a system?

• Governing equations

\[F = ma = m\left(\frac{\Delta v}{\Delta t}\right) \]

• A statistical relationship between inputs and outputs
 • Transfer function or response function

\[\hat{u}(z, \omega) = H(z, \omega) \hat{\tau}(\omega) \quad u(z, t) = \int_{t'} G(z, t - t') \tau(t') \, dt', \]
How can we identify a system?

- Governing equations

\[F = ma = m\left(\frac{\Delta v}{\Delta t}\right) \]

- A statistical relationship between inputs and outputs
 - Transfer function or response function

\[\hat{u}(z, \omega) = H(z, \omega)\hat{\tau}(\omega) \quad u(z, t) = \int_{t'} G(z, t - t')\tau(t') \, dt', \]

- Examples of a linear ‘ocean’ system using two approaches
Wind-current responses in the freq. domain

\[
\frac{\partial \mathbf{u}}{\partial t} + i f_c \mathbf{u} + r \mathbf{u} = \frac{1}{\rho} \frac{\partial \tau}{\partial z} \quad \text{Ekman theory}
\]
Wind-current responses in the freq. domain

\[
\frac{\partial u}{\partial t} + if_c u + ru = \frac{1}{\rho} \frac{\partial \tau}{\partial z}
\]

Ekman theory

\[
H_E(z, \sigma) = \frac{\hat{u}(z, \sigma)}{\hat{\tau}(\sigma)} = \frac{e^{i\lambda}}{\lambda \rho \nu}
\]

as a function of frequency

\[
\lambda = \sqrt{\left[i(\sigma + f_c) + r\right]/\nu}
\]
Wind-current responses in the freq. domain

\[\frac{\partial \mathbf{u}}{\partial t} + i f_c \mathbf{u} + r \mathbf{u} = \frac{1}{\rho} \frac{\partial \tau}{\partial z} \]

\[H_E(z, \sigma) = \frac{\hat{\mathbf{u}}(z, \sigma)}{\hat{\tau}(\sigma)} = \frac{e^{i z}}{\lambda \rho v} \]

\[\lambda = \sqrt{[i(\sigma + f_c) + r]/v} \]

At a given latitude, the relationship between wind stress and surface currents is given as a transfer function in the frequency domain.
Wind-current responses in latitude

\[\frac{\partial \mathbf{u}}{\partial t} + i f_c \mathbf{u} + r \mathbf{u} = \frac{1}{\rho} \frac{\partial \tau}{\partial z} \]

Ekman theory

\[H_E(z, f_c) = \frac{\hat{u}(z, f_c)}{\hat{\tau}(f_c)} = \frac{e^{i z}}{\lambda \rho v} \]

as a function of Coriolis freq. (latitude)

\[\lambda = \sqrt{[i(\sigma + f_c) + r]/v} \]
Wind-current responses in latitude

\[\frac{\partial \mathbf{u}}{\partial t} + i f_c \mathbf{u} + r \mathbf{u} = \frac{1}{\rho} \frac{\partial \tau}{\partial z} \]

\[\mathbf{H}_E(z, f_c) = \frac{\hat{u}(z, f_c)}{\hat{\tau}(f_c)} = \frac{e^{i\lambda z}}{\lambda \rho v} \]

\[\lambda = \sqrt{[i(\sigma + f_c) + r]/v} \]

\[\begin{align*}
r &= 0; \\
\text{at } \sigma &= 1 \text{ cpd} \\
(\text{diurnal frequency}).
\end{align*} \]

Shaffer, 1972; Ekman model

Simpson et al, JPO 2002 (Slab layer model)

Resonant latitude due to land/sea breeze: ±30°N
Latitudinal coastal observations

- US West Coast high-frequency radar network-derived surface currents and wind stress (red dots) at NDBC buoys.
- Latitudinal variation of 32°N to 47°N
Latitudinal coastal observations

- US West Coast high-frequency radar network-derived surface currents and wind stress (red dots) at NDBC buoys.
- Latitudinal variation of 32°N to 47°N

\[
\hat{u}(z, \omega) = H(z, \omega) \hat{\tau}(\omega)
\]

\[
H(z, \omega) = \left(\langle \hat{u}(z, \omega) \hat{\tau}^\dagger(\omega) \rangle \right) \left(\langle \hat{\tau}(\omega) \hat{\tau}^\dagger(\omega) \rangle + R_a \right)^{-1}
\]

\(R_a \): Regularization matrix
Variability of surface currents and wind

- Wind- and tide-coherent, low-frequency variance, and inertial variance

Kim et al. (JGR, 2011)
• Wind- and tide-coherent, low-frequency variance, and inertial variance

• Variance of the diurnal wind does not vary that much in the along-shore direction, but it is given as a function of distance from the shoreline (cross-shore direction).

Kim et al (JGR, 2011)
Coast-wide wind transfer functions

\[\hat{u}(z, \omega) = H(z, \omega) \hat{\tau}(\omega) \]

(Kim and Crawford, GRL 2014)
Coast-wide wind transfer functions

- At a given latitude, what would be the wind-current response in the frequency domain?
- At a given frequency, what would be the wind-current response as a function of latitude?

(Kim and Crawford, GRL 2014)
Coast-wide wind transfer functions

(Kim and Crawford, GRL 2014)
Coast-wide wind transfer functions

(Kim and Crawford, GRL 2014)
Resonant responses near the critical latitude

Slab layer model

\[Z = 0 \text{ (Ekman)} \]
\[Z = 0.35 \delta_E \text{ (Near-surface avg. Ekman)} \]

Resonant latitude due to land/sea breeze: \(\pm 30^\circ \text{N} \)
Summary

• Wind-current responses are examined in the frequency domain and latitude using analytic solutions of Ekman model (and slab layer and surface-averaged Ekman models) and observations off the US West Coast.
• The current responses are enhanced at the local inertial frequency.
• Resonant responses can be expected at the +/-30° latitude in the diurnal land-sea breeze environment.
• Energetic mixing and potential internal motions near the critical latitude are expected.
• Ocean responses to the diurnal wind and relevant bio-physical interactions can be a potential topic to pursue.