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• Correlations of the 2-year vector current data

(Kim et al. JGR, 2007)
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• De-correlation scale is the function of space (x, y).

(Kim et al. JGR, 2007)
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Spatial lag average over
all reference grid points 
in the study domain
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• Spatially composite correlation over the study domain

• Exponential shape (not Gaussian)
(Kim et al. JGR, 2007)
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L=134; d = 9045x1; M = 100; N = 100; 
The number of radial grid points The number of basis functions in the x and y directions



Motivation

• When we describe the variability of the spatial-temporal data  
(fields or system) and characterize them, we may examine 
their covariance structure and decorrelation scales. 

• However, the data may not be evenly sampled in space.

• Mapping of data on regularly spaced grid may be required, so 
the spatial covariance/correlation of the mapped fields 
contains a bias associated with given assumptions. 
• Correlation: a normalized structure of covariance

• So, how can we directly estimate covariance of unevenly 
sampled data in space?



Covariance estimates (1D, scalar)

• Covariance vs. Energy spectra 
• Exponential function with a decorrelation length scale of 2km

• Unevenly sampled data (plotted on the sampling index, not the physical 
domain



Covariance estimates (1D, scalar)

Assumptions: Stationary and homogeneous fields



Covariance estimates (1D, scalar)

True correlation Spectral estimates of correlation

Bin-averaging of correlation Their comparison



Covariance estimate (2D, vector)
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L=134; d = 9045x1; M = 100;



An idealized and spectral model



Covariance estimates (2D, vector)



Numerical model domain



Covariance estimates (2D, vector) - model



Covariance estimates (2D, vector) - observations



Summary

• A direct method of spatial covariance estimates on the scalar 
and vector data can minimize the bias due to an intermediate 
step of gridding.

• Solving the inverse problem can be computationally 
expensive, but we may use advanced computational 
resources.

• The number of realizations and the density of unevenly 
samplings (sparse vs. dense) can affect the performance of 
the proposed analysis, which should be examined with 
1D/simple examples. 


