
Revisit: Optimal interpolation in mapping of
high-frequency radar-derived surface radial velocity

maps
Sung Yong Kim

Department of Mechanical Engineering
Korea Advanced Institute of Science and Technology (KAIST)

Daejeon, 34141 Republic of Korea
syongkim@kaist.ac.kr

Abstract—This paper revisits optimal interpolation in mapping
of high-frequency radar-derived surface radial velocity maps.
OI has been used in the estimate of the current vector as an
alternative to un-weighted least-squares fit [see [1] for more
details]. OI is a biased estimator and assumes a (continuous)
spatial covariance function, derived from the observed spatial
scale and structure. It improves both baseline consistency and
the uncertainty definition in the estimates.

I. INTRODUCTION

High-frequency (HF) radar using Bragg-backscattered radar
signals ([2], [3], [4]) has matured as an oceanographic ob-
servation tool. It can provide hourly high resolution surface
current fields covering 50 to 150 km from the coastline
with 0.5–6 km spatial resolution. It can serve as part of
the infrastructure of the coastal ocean observing system to
integrate other in-situ observations and numerical modeling
products. Research on surface current measurements using
HF radars can be classified by technical issues, scientific
interpretations, and environmental applications: the processing
of the backscattered radar signal and the generation of the
vector current map from multiple radial current measurements;
understanding of the ocean surface circulation through analysis
in time and space; water quality monitoring, larvae spreading,
search and rescue, and oil spill tracking [[5]].

An un-weighted least-squares fitting (UWLS) method has
been used by many authors to extract the vector currents from
the radial velocities ([6], [7], [8]). Implicit in this approach
is an assumption of a uniform vector velocity producing the
radial velocities within the search radius for a given vector
grid point. In other words, the correlation of the vector current
is assumed to be one everywhere within the search radius
and zero outside. The method also assumes an unlimited
signal variance, which may create spurious estimates when
combining nearly aligned noisy radial velocities due to the
singularity of the geometric covariance matrix. The terms
‘signal variance’ and ‘error variance’ are defined here as the
expected variance of the surface currents and the expected ob-
servational error variance of the surface currents, respectively.
In operation, spurious vector solutions most often occur near
the baseline between two radars or near the maximum range.

The segmented correlation function in the UWLS method
can also produce a discontinuous current field. The proposed
optimal interpolation (OI) method uses a correlation for the
surface currents which more accurately describes the spatial
relationship between radial velocity measurements [[1]].

The technical and mathematical descriptions of un-weighted
least-squares fit and optimal interpolation are presented in the
following section.

II. METHODS

A. Radial velocity maps

The radial velocity (r) at a radial grid point with a bearing
angle (θ) is presented as a sum of the projection of two
orthogonal components (u and v) onto that angle and the
observational error (ϵ) [e.g., [9]]:

r = u†g + ϵ = u cos θ + v sin θ + ϵ, (1)

where g = [cos θ sin θ]
† is the directional unit vector, θ is

the bearing angle, and u = [u v]† is the vector current at the
sampling location († is the vector or matrix transpose).

B. Un-weighted least squares fit

A vector current (û; 2×1 vector) estimated from radials (r;
La × 1 vector) using unweighted LSF is

û =
(
G†G

)−1
G†r = Har, (2)

where G = [g1 g2 · · ·gLa ]
† (G; La × 2 matrix; equation 1).

In surface current measurements using HFRs, GDOP de-
pends on the number (La) of available radial velocities within
a search radius [e.g., [1]]. The GDOP indicates the diagonal
components of the inverse of a geometric covariance matrix
(G†G; 2×2 matrix), which corresponds to equation 12 in OI:

ν =
(
G†G

)−1
=

[
νuu νuv
νvu νvv

]
, (3)



where νuu and νvv are the GDOP in the x and y directions,
respectively,

νuu =
1

det (G†G)

La∑
l=1

sin2 θl ≥
1

La
, (4)

νvv =
1

det (G†G)

La∑
l=1

cos2 θl ≥
1

La
, (5)

and det denotes the determinant of a matrix. Thus, the GDOP
associated with La radials is given by

ν = νuu + νvv ≥ 4

La
. (6)

The GDOP has been used as a cutoff value for spurious and
inconsistent vector estimates [e.g., [8], [10]]. However, since
the GDOP only has a lower bound without an upper limit
(equations 4 to 6), it may not be appropriate to be chosen as a
criterion. In particular, GDOP can vary in time and space as the
available radials vary in the same way. However, GDOP has
been used as a fixed value with the assumption that there are
no missing radials [e.g., [11], [12], [13]]. For instance, it has
been mispresented as a unit quantity in the operational quality
assurance and quality control (QAQC) [e.g., http://cordc.ucsd.
edu/projects/mapping/maps/].

C. Optimal interpolation

A vector current (û) is OI-mapped from radials (r; Lb × 1
vector) using a data-model covariance (covdm; Lb×2 matrix)
and data-data covariance (covdd; Lb × Lb matrix):

û = cov†dmcov
−1
dd r = Hbr, (7)

where the data-model covariance is the covariance between a
vector current at the grid point of interest and radials, and
the data-data covariance is the covariance between radials
themselves:

û =
(
⟨ru†⟩

)† (⟨rsr†s⟩+ ⟨ϵϵ†⟩
)−1

r, (8)

=
(
g†
j⟨uju

†
i ⟩
)† (

g†
j⟨uju

†
k⟩gk + ⟨ϵϵ†⟩

)−1

r, (9)

where u = ui = [ui vi]
† is a vector current at the i-th

grid point of interest and r = [r1 r2 · · · rLb
]
† is the radial

velocities, participating in the estimate of the vector current
(j, k = 1, 2, · · · , Lb).

The current covariance (⟨uu†⟩) can be simplified with the
signal variance (σ2) and spatial correlation (ρ) as a function of
spatial lags, and the error covariance (⟨ϵϵ†⟩) can be simplified
as a diagonal matrix scaled by a scalar of γ2, which can retain
dependence on locations of the vector current grid or be a
constant regardless of their locations:

û =
[
g†
jσ

2
ijρ (∆xij ,∆yij)

]† [
g†
jσ

2
jkρ(∆xjk,∆yjk)gk + δjkγ

2
k

]−1

r,

(10)

where δjk denotes the Kronecker delta and, for instance, an
exponential correlation function, frequently used for mapping

submesoscale surface current fields [e.g., [1], [14]], is given
by

ρ(∆x,∆y) = exp

(
−

√
∆x2

λ2
x

+
∆y2

λ2
y

)
, (11)

and λx and λy denote the decorrelation length scales in the x
and y directions, respectively.

The root-mean-square estimated from the covariance of
nearby radial pairs obtained from multiple radars [see [1], [9]
for more details], i.e., the uncertainty of the radial observations
in the area of interest, can be used as γ2 in equation 10.
However, the error covariance of the radials (⟨ϵϵ†⟩; Lb × Lb

matrix) may not be a diagonal matrix because the noise of the
radials may not be independent.

The uncertainty (κ) of the OI-mapped vector current (û),
which corresponds to equation 3 in LSF, is defined as

κ =
γ2

σ2

(
covmm − cov†dmcov

−1
dd covdm

)
=

[
κuu κuv

κvu κvv

]
,

(12)

where

0 ≤ κuu ≤ γ2, (13)

0 ≤ κvv ≤ γ2. (14)

Note that κ has a unit of the square of the radial velocities.
Additionally, a normalized uncertainty index (κ̂; κ̂ = κ/γ2;
0 ≤ κ̂ ≤ 1) can be used as a consistent criterion for quality
assurance and quality control (QAQC) of estimated vector
currents.

III. CONCLUSION

In mapping of high-frequency radar-derived surface radial
velocity maps, OI has been used in the estimate of the current
vector as an alternative to un-weighted least-squares fit. As a
biased estimator, OI assumes a (continuous) spatial covariance
function, derived from the observed spatial scale and structure
in contrast of the segmented correlation function within a
search range. OI improves both baseline consistency and the
uncertainty definition in the estimates.
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