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Abstract
This paper presents a data-derived surface current forecast model
based on statistical decomposition techniques [[1]] on the observa-
tions of high-frequency radar-derived surface currents, local winds,
and sea surface height anomalies (SSHA) off southern San Diego.
The regional surface circulation mainly consists of tide-, wind-, and
low-frequency pressure gradient-coherent components, and residual
currents, which leads us to use tidal harmonic analysis, response
functions using wind stress and pressure gradients, autoregressive
analysis, respectively, in the forecast model. These basis functions
have been consecutively added, and the performance of correspond-
ing forecast models is evaluated.

Introduction
As one of geophysical boundary flows at the air-sea-land interface,
coastal circulation is associated with complex responses to a com-
bination of geophysical forces of tides, wind stress, heat flux, and
low-frequency forcing and their interactions [e.g., [2, 3, 4, 5]]. Under-
standing of ocean physics and bio-geo-chemistry, and their interac-
tions in coastal regions has been addressed with in-situ observations,
numerical simulations, and theories such as environmental sensing
and data analysis, computational fluid dynamics, and theoretical stud-
ies on geophysical fluid dynamics, respectively. Particularly, coastal
dynamics is vital for tracking of water-borne materials (e.g., search
and rescue, oil spill, and larvae) and for studying of coastal processes,
beach erosion, sea level rise, and fishery science [e.g., [6]; add more].

In the awareness of importance of ocean physics and bio-
geochemistry, the forecasting skill and models have been developed
with regional numerical models and concurrent in-situ observations
along with data assimilation techniques [refs]. Among them, the statis-
tical and dynamical data analyses have elucidated the coastal ocean
dynamics [[5, 1]]. [7] proposed a stochastic forecast model based
on harmonic analysis for tide-coherent surface currents and autore-
gressive process (e.g., Gauss-Markov method) for residual surface
currents in order to derive surface trajectory for search and rescue
missions. Primary distinction of this paper is to present a near-real
time forecast model based on observations of surface currents, tide
gauges, along-track altimeter, and local wind data by accumulating
them as regression basis functions and evaluate performance of the
forecast model in terms of individual basis functions.

Data Analysis
Data
Surface currents

Hourly surface current maps off southern San Diego are obtained from
an array of three high-frequency radars for a period of three years
(2007 to 2009). Data for a period of the first two years are used for
training a model and the rest of data is used for forecasting. The sta-
tistical decomposition of surface currents are reported elsewhere [[1]].

Sea surface heights

The sea surface elevations at tide gauges in San Diego Bay and
Los Angeles are analyzed to derive along-shore geostrophy-coherent
components. Moreover, along-track and optimally interpolated sea
surface height anomalies obtained from AVISO around southen San
Diego are used to estimate the pressure gradients in the cross-shore
and along-shore directions.
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Figure 1: An observation domain of submesoscale eddies using in-
situ observations: Three HF radars [R1 (Point Loma), R2 (Imperial
Beach), and R3 (Coronado Islands)] for surface currents, two stations
at the Scripps Pier (W1, SIO) and Tijuana River Valley (W2, TJR) for
wind, and one mooring (T) for both subsurface currents (ADCP) and
temperature profile. A black outline denotes the effective coverage
area of HF radars (at least 70% data availability for two years). The
bottom bathymetry contours are indicated by thin curves with 10 m
(0 < z < 100 m) and 50 m (100 < z < 1000 m) contour intervals and
thick curves at the 50, 100, 500, and 1000 m depths.

Coastal winds

The wind observations at Scripps Pier, Tijuana River, and NDBC buoy
(46086) are used to derived wind response functions [e.g., [8]].

Hindcast analysis
The archived surface currents can be decomposed into tide-coherent
(barotropic or baroclinic tides, or both), wind-coherent, primary-
frequency-band. geostrophy-coherent, and residual components
using harmonic analysis, slow-FFT analysis, wind- and sea-level-
response functions, and auto-regressive model, respectively [e.g., [1]]:

u(t) = ⟨u(t)⟩+ uT(t) + uW(t) + uS(t) + uG(t) + uR(t), (1)

where uT, uW, uS, uG, and uR denote tide-coherent, wind-coherent,
primary-frequency-band, geostrophy-coherent, and residual surface
currents, respectively. The time mean, ⟨u(t)⟩, is removed prior to the
harmonic analysis and updated during regression [see [9] for more
details].

Harmonic analysis

For the primary tidal constituents and unique resonance frequencies
due to bay and harbor effects, the tidal surface currents are isolated:

uT(t) =
K

∑
k=1

Ak cos σkt + Bk sin σkt, (2)

where

m̂ =
(
GG†)−1

G†u (3)

and m̂ = [Ak Bk]
† and G = [cos σ1t · · · cos σkt sin σ1t · · · sin σkt]

†.

Auto-regressive model

The auto-regressive model is applied to residual surface currents
(uR{·}) by regressing time-lagged basis functions:

uR(t) =
L

∑
l=1

CluR(t − l∆t), (4)

where

Cl =
⟨uR(t)u†

R,L(t)⟩
⟨uR,L(t)u†

R,L(t)⟩+ ⟨ϵCϵ†
C⟩

, (5)

uR,L(t) denotes the L time lagged of residual currents, uR(t) (two sub-
scripts separated by comma indicate the decomposed components
and the number time lags), and ϵ{·} indicates the noise level of im-
pulses (e.g., uR,L, τM, and uS,L in equations below) to constitute the
regularization matrix (⟨ϵ{·}ϵ{·}⟩).

Wind response function

The tidal-residual surface currents are decomposed with the wind re-
sponse function and auto-regressive model:

uW(t) =
M

∑
m=1

Dmτ(t − m∆t), (6)

where

Dm =
⟨u(t)τ†

M(t)⟩
⟨τM(t)τ†

M(t)⟩+ ⟨ϵDϵ†
D⟩

, (7)

(8)

and τM(t) denotes the M time lagged τ(t).

Figure 2: Regionally averaged power spectrum of hourly surface vec-
tor currents in the region with 45% or greater coverage (1337 grid
points) shows that the dominant variances are at the low frequencies
(less than 0.4 cpd), and the main tidal frequencies (K1 and M2) and
their harmonics.

Slow-FFT analysis

For the primary frequency bands (e.g., diurnal, semi-diurnal, and low-
frequency), the slow-FFT analysis is applied to isolate relevant vari-
ance:

uS(t) =
N

∑
n=1

En cos σnt + Fn sin σnt, (9)

where

m̂ =
(
GG† + α2I

)−1
G†u (10)

and m̂ = [En Fn]
† and G = [cos σ1t · · · cos σnt sin σ1t · · · sin σnt]†. α2

is the regularization coefficient to control the variance associated with
regression between overfitting and underfitting.

Geostrophic response function

The detided sea surface elevations at local tide gauges or altimeters
can be used as the basis function.

uG(t) =
P

∑
p=1

−Hp
g
fc
∇

[
η∥(t − p∆t)k

]
, (11)

where

Hp =
⟨uG(t)η†(t)⟩

⟨η(t)η†(t)⟩+ ⟨ϵHϵ†
H⟩

. (12)

uG denotes the cross-track geostrophic currents.

Forecast analysis
The hindcast analysis derives forcing-response relationships using the
training data (uTR) for a period of two years, and the forecast analy-
sis is executed to add decomposed components consecutively and to
evaluate the performance by comparing the forecast data (uFR) and
testing data (uTS) .

κ = 1 − ⟨(uTS − uFR)
2⟩

⟨u2
TS⟩

(13)
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Figure 3: An example of a set of time series of decomposed surface
currents at the location T in Figure 1. (a) Unconditioned surface cur-
rents (u). (b) Surface currents driven by pure tides (ut). (c) Locally
wind-driven surface currents (uw). (d) Mean surface currents (⟨u⟩).
(e) Surface currents in the low frequency band (uL̂). (f) Surface cur-
rents in the frequency band centered on diurnal frequency (uD̂). (g)
Surface currents in the frequency band centered on semidiurnal fre-
quency (uŜ). (h) Residual surface currents (ur).

Table 1: The variance fraction (%) of the decomposed surface cur-
rents. The variance of surface currents coherent with alongshore pres-
sure difference is approximately 3% of total variance.

Pure tide Wind Mean Low Diurnal Semidiurnal Residual
6.3 32.6 1.4 31.8 8.9 4.1 14.9

Conclusion
A data-derived surface current forecast model is formulated based
on statistical decomposition techniques on the observations of high-
frequency radar-derived surface currents, local winds, and sea surface
height anomalies off southern San Diego. Considering the primary
components in the regional surface circulation – tide-, wind-, and low-
frequency pressure gradient-coherent components, and residual cur-
rents, we adopt the tidal harmonic analysis, response functions using
wind stress and pressure gradients, and autoregressive analysis. re-
spectively, in the forecast model.
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