Regression analysis of historical coastal observations off southern California Bight the U.S. West Coast

Sung Yong Kim\* Bruce Cornuelle Eric Terrill \*syongkim@mpl.ucsd.edu

NOAA

Scripps Institution of Oceanography



Vinnemucc

Lázaro Cárdena:

NOAA Integrated Ocean Observing System (IOOS) Southern California Coastal Ocean Observing System (SCCOOS)

CALIFOR

## Motivation

- Partitioning of historical data into seasonality, components coherent with climate indices, and linear trend.
- Reporting variance fraction how much variance is explained by each term?
- Deriving climatology and reconstructing three-dimensional (x,y,z) time series (t).
- Detecting potential climate signals from coastal observations.
- Assisting regional ocean models and observations.

## Observations

CalCOFI Line (Cross-shore)

- Historical data
  - Quarterly California Cooperative Oceanic Fisheries (CalCOFI) CTD data (1950 – 2009).
  - Monthly CTD samplings at local discharge and outfalls off southern California (Bight Water Quality, Point Loma Ocean Outfall, and South Bay Ocean Outfall; 1990 – 2009).
  - Daily sampled surface temperature and salinity at shorestations off the USWC (1920 – 2009).



55 57 60 62 65 67 70 72 75 77 80 82 85 87 90 92 95 97 00 02 05 Time (Year)

#### **Regression basis**



- SA1 SA6 (6 harmonics of seasonality)
- ENSO: El-nino Southern Ocean Oscillation (1900-2009)
- PDO (Pacific Decadal Oscillation): 1<sup>st</sup> mode of North Pacific SST (1900-2009)
- NPGO (North Pacific Gyre Oscillation): 2<sup>nd</sup> mode of northeastern Pacific SSHAs + SST (1950-2009)
- SIOT: Scripps Pier Temperature (1916-2009)
- Linear trend

### Data decomposition

Decomposition of time series

 $d(t) = d_{\rm S}(t) + d_{\rm C}(t) + d_{\rm F}(t) + d_{\rm R}(t),$ 

- Seasonality with six harmonics (SA1, SA2, ..., and SA6).
- Climate indices (ENSO, PDO, NPGO, and SIOT).
- Polynomials (mean and linear trend)
- Successive orthogonalization
  - As climate indicate are coherent each other, there is ambiguity in partition of variance.
  - In a given order of basis functions, a basis function is orthogonalized by basis functions above that in sequentially.
  - Seasonality  $\rightarrow$  ENSO  $\rightarrow$  linear trend  $\rightarrow$  PDO  $\rightarrow$  NPGO  $\rightarrow$  SIOT

#### Correlation before orthogonalization

|      | ENSO  | PDO   | NPGO  | SIOT |
|------|-------|-------|-------|------|
| ENSO |       |       |       |      |
| PDO  | 0.58  |       |       |      |
| NPGO | -0.18 | -0.09 |       |      |
| SIOT | 0.21  | 0.20  | -0.02 |      |
|      |       |       |       |      |

#### Correlation after orthogonalization

|      | ENSO  | PDO   | NPGO | SIOT |
|------|-------|-------|------|------|
| ENSO |       |       |      |      |
| PDO  | -0.05 |       |      |      |
| NPGO | 0.07  | -0.00 |      |      |
| SIOT | -0.09 | 0.00  | 0.00 |      |

## Cross-shore and alongshore transects



# Total skill (CalCOFI)



# Individual skill for seasonality (SA1; CalCOFI)



# Individual skill for ENSO (CalCOFI)



# Individual skill for PDO (CalCOFI)



# Individual skill for NPGO (CalCOFI)



# Individual skill for SIOT (CalCOFI)



# Individual skill of linear trend (CalCOFI)



# Total RMS (CalCOFI)



# Residual RMS (CalCOFI)



## **Reconstructed data**



- Partitioning of historical coastal observations into seasonality, climate indices-coherent components, and linear trend.
- Successive orthogonalization was implemented for coherent basis functions.
- CalCOFI T/S/sigma-t are fitted with SA1, SA2, ENSO, linear trend, PDO, NPGO, and SIOT.
- Climate signal detections with other data sets.

