

Observation of submesoscale eddies off southern San Diego using high-frequency radars

Sung Yong Kim syongkim@mpl.ucsd.edu

Marine Physical Laboratory Scripps Institution of Oceanography

Motivation

- Hourly and 1-6 km spatial resolution.
- Derivation of useful products (e.g., kinematic and dynamic quantities).
- Observation of submesoscale eddies/fronts.

Rossby number.

cal front-scale circulation and high deformation ates in horizontal.

Eddy detection

- Streamlines (nearly closed polygons) are identified with winding angle method.
- Co-centered streamlines are fitted into an ellipse.
- If the center of ellipses in consecutive time steps is within a drifting range (e.g., 1.5 km) with the same rotation, they are considered as a part of an eddy time series. The length of time series is called as persistency.

Rossby number and size

- O(0.5-1) Rossby number at the center of eddies
- 5-20km diameter (L)

Circulation & WO parameter

Horizontal structure

• V_{Θ} and ζ/f_{c} have similar shapes to the Taylor eddy.

Frontal-scale secondary circulation

Submesoscale eddies on the USWC

Summary and discussion

- Direct estimate of kinematic and dynamic quantities from radial velocity maps of HF radars: stream function, velocity potential, divergence, vorticity, and deformation rates.
- Eddy detection using geometric criteria on co-centered streamlines -- winding angle.
- Submesoscale eddies off southern San Diego: Rossby number of O(0.5-1) and 5-20 km diameter
- Frontal-scale vertical circulation due to drifting eddies undulates thermoclines.
- A potential instrument to observe submeoscale eddies in coastal regions.

Thank you.