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Abstract
Analysis of coastal surface currents measured off the coast of San
Diego for two years suggests an anisotropic and asymmetric response
to the wind, probably as a result of bottom/coastline boundary ef-
fects including pressure gradients. In a linear regression, the sta-
tistically estimated anisotropic response explains approximately 20%
more surface current variance than an isotropic wind-ocean response
model. After steady wind forcing for three days, the isotropic surface
current response veers 42◦±2◦ to the right of the wind regardless of
wind direction, whereas the anisotropic analysis suggests that the up-
coast (onshore) wind stress generates surface currents with 10◦±4◦

(71◦±3◦) to the right of the wind direction. The anisotropic response
thus reflects the dominance of alongshore currents in this coastal re-
gion. Both analyses yield wind-driven currents with 3%–5% of the wind
speed, as expected. In addition, nonlinear isotropic and anisotropic
response functions are considered, and the asymmetric current re-
sponses to the wind are examined. These results provide a compre-
hensive statistical model of the wind-driven currents in the coastal re-
gion, which has not been well identified in previous field studies, but
is qualitatively consistent with descriptions of the current response in
coastal ocean models.

1 Theoretical background
Adjustment terms (Ax and Ay) in the momentum equations are intro-
duced that are only related to the wind-driven currents modeling both
bottom drag and pressure gradient set up along the coast:
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where fc, ρ, and µ denote the Coriolis frequency, the seawater density,
and the dynamic viscosity, respectively. The depth coordinate (upward
positive) is denoted as z.
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Figure 1: (a),(c) The magnitude and phase of the linear isotropic trans-
fer function in the Ekman theory [1, 2] at each 0.25δE depth increment
from the surface (z = 0) to the Ekman depth (z = δE). (b),(d) The mag-
nitude and phase of the four functions of the linear anisotropic transfer
function at the surface for a parameter choice as the Ekman theory.
The isotropic/anisotropic transfer functions are calculated assuming
infinite water depth with depth-independent viscosity (ν = 1 × 10−4

m2 s−1) and no friction (rxx = 0 and ryy = 0). The terms Hxx and Hyy in
(b) and (d) are superposed, and Hxy and Hyx in (b) are superposed.
The vertical dotted line indicates the inertial frequency (ω = ±1.07 cpd)
in the study domain.

Assuming µ is independent of depth, the adjustment terms are com-
posed of pressure gradients and the anisotropic part of the stress di-
vergence:
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where ν and νa denote the isotropic and anisotropic kinematic viscos-
ity, respectively.

For the statistical analysis on the observations, the adjustment terms
are considered as convolutions of the time history of currents:

Ax = axx ∗ u + axy ∗ v =
∫ ∞

−∞
axx(ξ)u(t− ξ) + axy(ξ)v(t− ξ)dξ, (5)

Ay = ayx ∗ u + ayy ∗ v =
∫ ∞

−∞
ayx(ξ)u(t− ξ) + ayy(ξ)v(t− ξ)dξ, (6)

where axx, axy, ayx, and ayy represent the effects of the bottom and
coastline boundary friction and the pressure gradient set up near the
coast. They are convolved in the time domain with the current compo-
nents (u and v) in the x and y directions, respectively (The asterisk is
the time domain convolution operator).
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Figure 2: The linear anisotropic transfer function based on the ex-
tended Ekman theory with depth-independent viscosity (ν = 1 × 10−4

m2 s−1) and two different frictions in the x and y directions (rxx = 1×10−6

s−1 and ryy = 4× 10−5 s−1). (a) The magnitude of the anisotropic trans-
fer function. (b) The magnitude of the isotropic transfer function with
same viscosity and the friction as the arithmetic mean of two frictions
[r = (rxx + ryy)/2], and the magnitude of the anisotropic transfer func-
tion when wind stress (τx or τy) is applied in each direction. (c) The
phase of the anisotropic transfer function. (d) The phase of the isotr-
pic/anisotropic transfer functions. The phase transition frequency (ω0)
is 0.7909 cpd [a vertical dash-dotted line in (b) and (d)] for the selected
parameters. The terms Hxy and Hyx in (a) are overlapped. See Fig. 1
for definition of the vertical dotted line.

2 Observations
Surface currents used for this study were observed by high-frequency
(HF; ∼25 MHz) radars for two years (April 2003–March 2005) over a
40 km region from the coast of southern San Diego County ([3]). The
wind observed at Tijuana River (Tidal Linkage station, Fig. 3) during
the same period as the surface current is hourly averaged.
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Figure 3: The study domain of surface currents and the wind. The
effective spatial coverage area where the HF radars (R1, R2, and R3)
observed is indicated with black curve. Three HF radar sites are Point
Loma (R1), Border Park (R2), and Coronado Island (R3). The Tijuana
River wind station (W) is located near the Tijuana River valley. The
bottom bathymetry contours are indicated by the thin curves with 10
m (0 < z < 100 m) and 50 m (100 < z < 1000 m) contour intervals and
the thick curves at the 50, 100, 500, and 1000-m depths.

3 Methods
3.1 Frequency domain
The linear regression equation in the frequency domain is

û(z, ω) = H(z, ω)τ̂ (ω). (7)

The transfer function (H) is computed from the (time) ensemble co-
variance average of the Fourier coefficients of surface currents (û)
and wind stress (τ̂ ) at each frequency (ω):

H(z, ω) =
[
〈û(z, ω) τ̂ †(ω)〉

] [
〈τ̂ (ω) τ̂ †(ω)〉 + Ra

]−1
, (8)

where † indicates the complex conjugate transpose, 〈·〉 is the ensem-
ble average, and Ra is the regularization matrix and is assumed to be
the noise level of the wind stress.

3.2 Time domain
The covariance of currents and wind stress is

〈uτ †〉 =
∫

t′
g(z, t− t′) 〈τ (t′)τ (t)†〉 dt′ (9)

and is truncated and discretized as a finite sum:

〈uτ †〉 =
N∑

k=0

g(z, k∆t) 〈τ (t− k∆t)τ (t)†〉. (10)

In other words,

〈u(z, t) τ †N(t)〉 = G(z)〈τN(t) τ †N(t)〉, (11)

where τN(t) = [τ (t−N∆t) · · · τ (t−∆t)τ (t)]† is the wind stress stacked
with N hours time lag.

The response function (G) is computed from the covariance matrix
between surface currents (u) and time lag wind stress (τN):

G(z) =
[
〈u(z, t) τ †N(t)〉

] [
〈τN(t) τ †N(t)〉 + Rb

]−1
, (12)

where G = [g1 g2 · · · gN ]†, and Rb is the regularization matrix, which
compensates for the sample error in the covariance matrix by sup-
pressing small or negative eigenvalues.

4 Results
4.1 Transfer functions
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Figure 4: (left) Isotropic transfer function. (right) Anisotropic transfer
function. (a) Magnitude, (b) phase, and (c) temporal amplitudes of the
linearly estimated WIRF. The isotropic transfer function is estimated
with 90 subsamples. The uncertainty shown as the gray-shaded re-
gion in (a) and (b) is calculated from 30 realizations using the jack-
knife method. The vertical dot line indicates the inertial frequency
(ω = −1.07 cpd) in the study domain.

Figure 5: (a) Magnitude and (b) phase of the linearly estimated
isotropic/anisotropic transfer functions for wind stress (τx and τy), re-
spectively. The phase of the anisotropic transfer function for the y-
directional wind stress (τy) is shifted down by 90◦ to align with the oth-
ers. The solid curves in (a) and (b) are the same as in Figs. 4a and
4b, respectively. See Fig. 4 for the definition of the vertical dotted line.

4.2 Time integrations
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Figure 6: Time integrations of the temporal amplitudes of the lin-
early estimated transfer functions for a constant wind stress dur-
ing three days for (a) isotropic/anisotropic transfer functions and (b)
isotropic/anisotropic response functions. The wind stress at either
direction (τx or τy) of the typical wind speed (|u| = 3 m s−1) in the
study domain is applied. Anisotropic response for the y-directional
wind stress (τy) is rotated 90◦ clockwise to align with other responses.
The thin dashdotted quarter-circular curves denote the percentage of
the wind-driven current speed to the wind speed, which are 1%, 2%,
3%, 4%, and 5% from the origin, and the thin dotted line indicates the
direction of 45◦ to the right of the wind stress.
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